Routh–Hurwitz Stability Criterion
   HOME
*





Routh–Hurwitz Stability Criterion
In control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as time goes on. The Routh test is an efficient recursive algorithm that English mathematician Edward John Routh proposed in 1876 to determine whether all the roots of the characteristic polynomial of a linear system have negative real parts. German mathematician Adolf Hurwitz independently proposed in 1895 to arrange the coefficients of the polynomial into a square matrix, called the Hurwitz matrix, and showed that the polynomial is stable if and only if the sequence of determinants of its principal submatrices are all positive. The two procedures are equivalent, with the Routh test providing a more efficient way to compute the Hurwitz determinants ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derivation Of The Routh Array
The Routh array is a tabular method permitting one to establish the stability of a system using only the coefficients of the characteristic polynomial. Central to the field of control systems design, the Routh–Hurwitz theorem and Routh array emerge by using the Euclidean algorithm and Sturm's theorem in evaluating Cauchy indices. The Cauchy index Given the system: : \begin f(x) & = a_0x^n+a_1x^+\cdots+a_n & \quad (1) \\ & = (x-r_1)(x-r_2)\cdots(x-r_n) & \quad (2) \\ \end Assuming no roots of f(x) = 0 lie on the imaginary axis, and letting : N = The number of roots of f(x) = 0 with negative real parts, and : P = The number of roots of f(x) = 0 with positive real parts then we have : N+P=n \quad (3) Expressing f(x) in polar form, we have : f(x) = \rho(x)e^ \quad (4) where : \rho(x) = \sqrt \quad (5) and : \theta(x) = \tan^\big(\mathfrak(x)\mathfrak(x)big) \quad (6) from (2) note that : \theta(x) = \theta_(x)+\theta_(x)+\cdots+\theta_(x) \quad (7) where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Theory
Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any ''delay'', ''overshoot'', or ''steady-state error'' and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or set point (SP). The difference between actual and desired value of the process variable, called the ''error'' signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects which are also studied are controllability and observability. Control theory is used in control system eng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bistritz Stability Criterion
In signal processing and control theory, the Bistritz criterion is a simple method to determine whether a discrete linear time invariant (LTI) system is stable proposed by Yuval Bistritz.Y. Bistritz (1984 Zero location with respect to the unit circle of discrete-time linear system polynomials Proc. IEEE, 72 (9): 1131–1142.Y. Bistritz (2002 Zero location of polynomials with respect to the unit circle unhampered by nonessential singularities IEEE Trans. CAS I, 49(3): 305–314. Stability of a discrete LTI system requires that its characteristic polynomial :D_n(z) = d_0+d_1 z+d_2 z^2+ \cdots + d_z^ + d_n z^n (obtained from its difference equation, its dynamic matrix, or appearing as the denominator of its transfer function) is a stable polynomial, where D_n(z) is said to be stable if all its roots (zeros) are inside the unit circle, viz. :, z_k, < 1 , k=1,\dots,n, where D_n(z)=d_n \prod_^n (z-z_k) . The test determines whether D_n(z) is s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nyquist Stability Criterion
In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer at Siemens in 1930 and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, is a graphical technique for determining the stability of a dynamical system. Because it only looks at the Nyquist plot of the open loop systems, it can be applied without explicitly computing the poles and zeros of either the closed-loop or open-loop system (although the number of each type of right-half-plane singularities must be known). As a result, it can be applied to systems defined by non- rational functions, such as systems with delays. In contrast to Bode plots, it can handle transfer functions with right half-plane singularities. In addition, there is a natural generalization to more complex systems with multiple inputs and multiple outputs, such as control systems for airplan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Engineering
Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world. The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance. Systems designed to perform without requiring human input are called automatic control systems (such as cruise control for regulating the speed of a car). Multi-disciplinary in nature, control systems engineering activities focus on implementation of control systems mainly derived by mathematical modeling of a diverse range of systems. Overview Modern day control engineering is a relatively new field of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liénard–Chipart Criterion
In control system theory, the Liénard–Chipart criterion is a stability criterion modified from the Routh–Hurwitz stability criterion, proposed by A. Liénard and M. H. Chipart. This criterion has a computational advantage over the Routh–Hurwitz criterion because it involves only about half the number of determinant computations. Algorithm The Routh–Hurwitz stability criterion says that a necessary and sufficient condition for all the roots of the polynomial with real coefficients ::f(z) = a_0 z^n + a_1 z^ + \cdots + a_n \, (a_0 > 0) to have negative real parts (i.e. f is Hurwitz stable) is that :: \Delta_1 > 0,\, \Delta_2 > 0, \ldots, \Delta_n > 0, where \Delta_i is the ''i''-th leading principal minor of the Hurwitz matrix In mathematics, a Hurwitz matrix, or Routh–Hurwitz matrix, in engineering stability matrix, is a structured real square matrix constructed with coefficients of a real polynomial. Hurwitz matrix and the Hurwitz stability criterion Namely, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Minor (linear Algebra)
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices. Definition and illustration First minors If A is a square matrix, then the ''minor'' of the entry in the ''i''th row and ''j''th column (also called the (''i'', ''j'') ''minor'', or a ''first minor'') is the determinant of the submatrix formed by deleting the ''i''th row and ''j''th column. This number is often denoted ''M''''i,j''. The (''i'', ''j'') ''cofactor'' is obtained by multiplying the minor by (-1)^. To illustrate these definitions, consider the following 3 by 3 matrix, :\begin 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \\ \end To compute the minor ''M''2,3 and the cofactor ''C''2,3, we fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sylvester Matrix
In mathematics, a Sylvester matrix is a matrix associated to two univariate polynomials with coefficients in a field or a commutative ring. The entries of the Sylvester matrix of two polynomials are coefficients of the polynomials. The determinant of the Sylvester matrix of two polynomials is their resultant, which is zero when the two polynomials have a common root (in case of coefficients in a field) or a non-constant common divisor (in case of coefficients in an integral domain). Sylvester matrices are named after James Joseph Sylvester. Definition Formally, let ''p'' and ''q'' be two nonzero polynomials, respectively of degree ''m'' and ''n''. Thus: :p(z)=p_0+p_1 z+p_2 z^2+\cdots+p_m z^m,\;q(z)=q_0+q_1 z+q_2 z^2+\cdots+q_n z^n. The Sylvester matrix associated to ''p'' and ''q'' is then the (n+m)\times(n+m) matrix constructed as follows: * if ''n'' > 0, the first row is: :\begin p_m & p_ & \cdots & p_1 & p_0 & 0 & \cdots & 0 \end. * the second row is the first row, shifted one c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Routh–Hurwitz Stability Criterion
In control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as time goes on. The Routh test is an efficient recursive algorithm that English mathematician Edward John Routh proposed in 1876 to determine whether all the roots of the characteristic polynomial of a linear system have negative real parts. German mathematician Adolf Hurwitz independently proposed in 1895 to arrange the coefficients of the polynomial into a square matrix, called the Hurwitz matrix, and showed that the polynomial is stable if and only if the sequence of determinants of its principal submatrices are all positive. The two procedures are equivalent, with the Routh test providing a more efficient way to compute the Hurwitz determinants ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Algebra
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero. Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed. The theorem is also stated as follows: every non-zero, single-variable, degree ''n'' polynomial with complex coefficients has, counted with multiplicity, exactly ''n'' complex roots. The equivalence of the two statements can be proven through the use of successive polynomial division. Despite its name, there is no purely algebraic proof of the theorem, since any proof must use some form of the analytic completeness of the real numbers, which is not an algebraic concept. Additionally, it is not fundamental for modern algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclid's Algorithm
In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his ''Elements'' (c. 300 BC). It is an example of an ''algorithm'', a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations. The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Routh–Hurwitz Theorem
In mathematics, the Routh–Hurwitz theorem gives a test to determine whether all roots of a given polynomial lie in the left half-plane. Polynomials with this property are called Hurwitz stable polynomials. The Routh-Hurwitz theorem is important in dynamical systems and control theory, because the characteristic polynomial of the differential equations of a stable linear system has roots limited to the left half plane (negative eigenvalues). Thus the theorem provides a test to determine whether a linear dynamical system is stable without solving the system. The Routh–Hurwitz theorem was proved in 1895, and it was named after Edward John Routh and Adolf Hurwitz. Notations Let ''f''(''z'') be a polynomial (with complex coefficients) of degree ''n'' with no roots on the imaginary axis (i.e. the line ''Z'' = ''ic'' where ''i'' is the imaginary unit and ''c'' is a real number). Let us define P_0(y) (a polynomial of degree ''n'') and P_1(y) (a nonzero polynomial o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]