Rosenbrock Function
   HOME
*



picture info

Rosenbrock Function
In mathematical optimization, the Rosenbrock function is a non- convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. It is also known as Rosenbrock's valley or Rosenbrock's banana function. The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult. The function is defined by f(x, y) = (a-x)^2 + b(y-x^2)^2 It has a global minimum at (x, y)=(a, a^2), where f(x, y)=0. Usually, these parameters are set such that a = 1 and b = 100. Only in the trivial case where a=0 the function is symmetric and the minimum is at the origin. Multidimensional generalisations Two variants are commonly encountered. One is the sum of N/2 uncoupled 2D Rosenbrock problems, and is defined only for even Ns: : f(\mathbf) = f(x_1, x_2, \dots, x_N) = \sum_^ \left 00(x_^2 - x_)^2 + (x_ - 1)^2 \right This variant has p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Theorem Of Algebra
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non- constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero. Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed. The theorem is also stated as follows: every non-zero, single-variable, degree ''n'' polynomial with complex coefficients has, counted with multiplicity, exactly ''n'' complex roots. The equivalence of the two statements can be proven through the use of successive polynomial division. Despite its name, there is no purely algebraic proof of the theorem, since any proof must use some form of the analytic completeness of the real numbers, which is not an algebraic concept. Additionally, it is not fundamental for modern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nelder–Mead Method
The Nelder–Mead method (also downhill simplex method, amoeba method, or polytope method) is a numerical method used to find the minimum or maximum of an objective function in a multidimensional space. It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points * * (algorithm summary online). on problems that can be solved by alternative methods. * Yu, Wen Ci. 1979. "Positive basis and a class of direct search techniques". ''Scientia Sinica'' 'Zhongguo Kexue'' 53—68. * Yu, Wen Ci. 1979. "The convergent property of the simplex evolutionary technique". ''Scientia Sinica'' 'Zhongguo Kexue'' 69–77. * * The Nelder–Mead technique was proposed by John Nelder and Roger Mead in 1965, as a development of the method of Spendley et al. Overview The method uses the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adaptive Coordinate Descent
Adaptive coordinate descent is an improvement of the coordinate descent algorithm to non-separable optimization by the use of adaptive encoding. The adaptive coordinate descent approach gradually builds a transformation of the coordinate system such that the new coordinates are as decorrelated as possible with respect to the objective function. The adaptive coordinate descent was shown to be competitive to the state-of-the-art evolutionary algorithms and has the following invariance properties: # Invariance with respect to monotonous transformations of the function (scaling) # Invariance with respect to orthogonal transformations of the search space (rotation). CMA-like Adaptive Encoding Update (b) mostly based on principal component analysis (a) is used to extend the coordinate descent method (c) to the optimization of non-separable problems (d). The adaptation of an appropriate coordinate system allows adaptive coordinate descent to outperform coordinate descent on non-separ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gradient Descent
In mathematics, gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a local maximum of that function; the procedure is then known as gradient ascent. Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. Jacques Hadamard independently proposed a similar method in 1907. Its convergence properties for non-linear optimization problems were first studied by Haskell Curry in 1944, with the method becoming increasingly well-studied and used in the following decades. Description Gradient descent is based on the observation that if the multi-variable function F(\mathbf) is de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rosenbrock
Rosenbrock is a surname. Notable people with the surname include: * Eddie Rosenbrock (1908–1978), Australian rules footballer *Howard Harry Rosenbrock Howard Harry Rosenbrock (16 December 1920 – 21 October 2010) was a leading figure in control theory and control engineering. He was born in Ilford, England in 1920, graduated in 1941 from University College London with a 1st class honors degre ... (1920–2010), English control theorist and engineer * Peter Rosenbrock (1939–2005), Australian rules footballer {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rosenbrock Roots Exhibiting Hump Structures
Rosenbrock is a surname. Notable people with the surname include: * Eddie Rosenbrock (1908–1978), Australian rules footballer *Howard Harry Rosenbrock Howard Harry Rosenbrock (16 December 1920 – 21 October 2010) was a leading figure in control theory and control engineering. He was born in Ilford, England in 1920, graduated in 1941 from University College London with a 1st class honors degre ... (1920–2010), English control theorist and engineer * Peter Rosenbrock (1939–2005), Australian rules footballer {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm's Theorem
In mathematics, the Sturm sequence of a univariate polynomial is a sequence of polynomials associated with and its derivative by a variant of Euclid's algorithm for polynomials. Sturm's theorem expresses the number of distinct real roots of located in an interval in terms of the number of changes of signs of the values of the Sturm sequence at the bounds of the interval. Applied to the interval of all the real numbers, it gives the total number of real roots of . Whereas the fundamental theorem of algebra readily yields the overall number of complex roots, counted with multiplicity, it does not provide a procedure for calculating them. Sturm's theorem counts the number of distinct real roots and locates them in intervals. By subdividing the intervals containing some roots, it can isolate the roots into arbitrarily small intervals, each containing exactly one root. This yields the oldest real-root isolation algorithm, and arbitrary-precision root-finding algorithm for uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]