Ribet's Theorem
   HOME
*





Ribet's Theorem
Ribet's theorem (earlier called the epsilon conjecture or ε-conjecture) is part of number theory. It concerns properties of Galois representations associated with modular forms. It was proposed by Jean-Pierre Serre and proven by Ken Ribet. The proof was a significant step towards the proof of Fermat's Last Theorem (FLT). As shown by Serre and Ribet, the Taniyama–Shimura conjecture (whose status was unresolved at the time) and the epsilon conjecture together imply that FLT is true. In mathematical terms, Ribet's theorem shows that if the Galois representation associated with an elliptic curve has certain properties, then that curve cannot be modular (in the sense that there cannot exist a modular form that gives rise to the same representation). Statement Let be a weight 2 newform on – i.e. of level where does not divide – with absolutely irreducible 2-dimensional mod Galois representation unramified at if and finite flat at . Then there exists a weigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isogeny
In mathematics, in particular, in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel. If the groups are abelian varieties, then any morphism of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that . Such an isogeny then provides a group homomorphism between the groups of -valued points of and , for any field over which is defined. The terms "isogeny" and "isogenous" come from the Greek word ισογενη-ς, meaning "equal in kind or nature". The term "isogeny" was introduced by Weil; before this, the term "isomorphism" was somewhat confusingly used for what is now called an isogeny. Case of abelian varieties For abelian varieties, such as elliptic curves, this notion can also be formulated as follows: Let ''E''1 and ''E''2 be abelian varieties of the same dimension over a field ''k''. An isogeny between ''E''1 and ''E''2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kevin Buzzard
Kevin Mark Buzzard (born 21 September 1968) is a British mathematician and currently a professor of pure mathematics at Imperial College London. He specialises in arithmetic geometry and the Langlands program. Biography While attending the Royal Grammar School, High Wycombe he competed in the International Mathematical Olympiad, where he won a bronze medal in 1986 and a gold medal with a perfect score in 1987. He obtained a B.A. degree ( Parts I & II) in Mathematics at Trinity College, Cambridge, where he was Senior Wrangler (achiever of the highest mark), and went on to complete the C.A.S.M. He then completed his dissertation, entitled ''The levels of modular representations'', under the supervision of Richard Taylor, for which he was awarded a Ph.D. degree. He took a lectureship at Imperial College London in 1998, a readership in 2002, and was appointed to a professorship in 2004. From October to December 2002 he held a visiting professorship at Harvard University, having ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Taylor (mathematician)
Richard Lawrence Taylor (born 19 May 1962) is a British mathematician working in the field of number theory. He is currently the Barbara Kimball Browning Professor in Humanities and Sciences at Stanford University. Taylor received the 2015 Breakthrough Prize in Mathematics "for numerous breakthrough results in the theory of automorphic forms, including the Taniyama–Weil conjecture, the local Langlands conjecture for general linear groups, and the Sato–Tate conjecture." He also received the 2007 Shaw Prize in Mathematical Sciences for his work on the Langlands program with Robert Langlands. He also served on the Mathematical Sciences jury for the Infosys Prize from 2012 to 2014. Career He received his B.A. from Clare College, Cambridge.SAVILIAN PROFESSORSHIP OF GEOMETRY in NOTICES, University Gazette 23.3.95 No. 435 During his time at University of Cambridge, Cambridge, he was president of The Archimedeans in 1981 and 1982, following the resignation of his predecessor. He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wiles' Proof Of Fermat's Last Theorem
Wiles's proof of Fermat's Last Theorem is a proof by British mathematician Andrew Wiles of a special case of the modularity theorem for elliptic curves. Together with Ribet's theorem, it provides a proof for Fermat's Last Theorem. Both Fermat's Last Theorem and the modularity theorem were almost universally considered inaccessible to prove by contemporaneous mathematicians, meaning that they were believed to be impossible to prove using current knowledge. Wiles first announced his proof on 23 June 1993 at a lecture in Cambridge entitled "Modular Forms, Elliptic Curves and Galois Representations". However, in September 1993 the proof was found to contain an error. One year later on 19 September 1994, in what he would call "the most important moment of isworking life", Wiles stumbled upon a revelation that allowed him to correct the proof to the satisfaction of the mathematical community. The corrected proof was published in 1995. Wiles's proof uses many techniques from algebrai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abc Conjecture
The ''abc'' conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture in number theory that arose out of a discussion of Joseph Oesterlé and David Masser in 1985. It is stated in terms of three positive integers ''a'', ''b'' and ''c'' (hence the name) that are relatively prime and satisfy ''a'' + ''b'' = ''c''. The conjecture essentially states that the product of the distinct prime factors of ''abc'' is usually not much smaller than ''c''. A number of famous conjectures and theorems in number theory would follow immediately from the ''abc'' conjecture or its versions. Mathematician Dorian Goldfeld described the ''abc'' conjecture as "The most important unsolved problem in Diophantine analysis". The ''abc'' conjecture originated as the outcome of attempts by Oesterlé and Masser to understand the Szpiro conjecture about elliptic curves, which involves more geometric structures in its statement than the ''abc'' conjecture. The ''abc'' conjecture was sho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Descent (mathematics)
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. Descent of vector bundles The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose ''X'' is a topological space covered by open sets ''Xi''. Let ''Y'' be the disjoint union of the ''Xi'', so that there is a natural mapping :p: Y \rightarrow X. We think of ''Y'' as 'above' ''X'', with the ''Xi'' projection 'down' onto ''X''. With this language, ''descent'' implies a vector bundle on ''Y ''(so, a bundle given on each ''Xi''), and our concern is to 'glue' those bundles ''Vi'', to make a single bundle ''V'' on X. What we mean is that ''V'' should, when restricted to ''Xi'', give back ''Vi'', up to a bundle isomorphism. The data needed is then this: on each overlap :X_, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radical Of An Integer
In number theory, the radical of a positive integer ''n'' is defined as the product of the distinct prime numbers dividing ''n''. Each prime factor of ''n'' occurs exactly once as a factor of this product: \displaystyle\mathrm(n)=\prod_p The radical plays a central role in the statement of the abc conjecture. Examples Radical numbers for the first few positive integers are : 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, ... . For example, 504 = 2^3 \cdot 3^2 \cdot 7 and therefore \operatorname(504) = 2 \cdot 3 \cdot 7 = 42 Properties The function \mathrm is multiplicative (but not completely multiplicative). The radical of any integer n is the largest square-free divisor of n and so also described as the square-free kernel of n. There is no known polynomial-time algorithm for computing the square-free part of an integer. The definition i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discriminant
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. The discriminant of the quadratic polynomial ax^2+bx+c is :b^2-4ac, the quantity which appears under the square root in the quadratic formula. If a\ne 0, this discriminant is zero if and only if the polynomial has a double root. In the case of real coefficients, it is positive if the polynomial has two distinct real roots, and negative if it has two distinct complex conjugate roots. Similarly, the discriminant of a cubic polynomial is zero if and only if the polynomial has a multiple root. In the case of a cubic with real coefficients, the discriminant is positive if the polynomial has three distinct real roots, and negative i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kenneth Alan Ribet
Kenneth Alan Ribet (; born June 28, 1948) is an American mathematician working in algebraic number theory and algebraic geometry. He is known for the Herbrand–Ribet theorem and Ribet's theorem, which were key ingredients in the proof of Fermat's Last Theorem, as well as for his service as President of the American Mathematical Society from 2017 to 2019. He is currently a professor of mathematics at the University of California, Berkeley. Early life and education Kenneth Ribet was born in Brooklyn, New York to parents David Ribet and Pearl Ribet, both Jewish, on June 28, 1948. As a student at Far Rockaway High School, Ribet was on a competitive mathematics team, but his first field of study was chemistry. Ribet earned his bachelor's degree and master's degree from Brown University in 1969. In 1973, Ribet received his Ph.D. from Harvard University under the supervision of John Tate. Career After receiving his doctoral degree, Ribet taught at Princeton University for three years ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Duke Mathematical Journal
''Duke Mathematical Journal'' is a peer-reviewed mathematics journal published by Duke University Press. It was established in 1935. The founding editors-in-chief were David Widder, Arthur Coble, and Joseph Miller Thomas Joseph Miller Thomas (16 January 1898 – 1979) was an American mathematician, known for the Thomas decomposition of algebraic and differential systems. Thomas received his Ph.D., supervised by Frederick Wahn Beal, from the University of Pennsylva .... The first issue included a paper by Solomon Lefschetz. Leonard Carlitz served on the editorial board for 35 years, from 1938 to 1973. The current managing editor is Richard Hain (Duke University). Impact According to the journal homepage, the journal has a 2018 impact factor of 2.194, ranking it in the top ten mathematics journals in the world. References External links

* Mathematics journals Duke University, Mathematical Journal Publications established in 1935 Multilingual journals English-language jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Yutaka Taniyama
was a Japanese mathematician known for the Taniyama–Shimura conjecture. Contribution Taniyama was best known for conjecturing, in modern language, automorphic properties of L-functions of elliptic curves over any number field. A partial and refined case of this conjecture for elliptic curves over rationals is called the Taniyama–Shimura conjecture or the modularity theorem whose statement he subsequently refined in collaboration with Goro Shimura. The names Taniyama, Shimura and Weil have all been attached to this conjecture, but the idea is essentially due to Taniyama. “Taniyama's interests were in algebraic number theory and his fame is mainly due to two problems posed by him at the symposium on Algebraic Number Theory held in Tokyo and Nikko in 1955. His meeting with André Weil at this symposium was to have a major influence on Taniyama's work. These problems form the basis of a conjecture: every elliptic curve defined over the rational field is a factor of the Jacob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]