Restricted Power Series
   HOME
*





Restricted Power Series
In algebra, the ring of restricted power series is the subring of a formal power series ring that consists of power series whose coefficients approach zero as degree goes to infinity.. Over a non-archimedean complete field, the ring is also called a Tate algebra. Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields. Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a polynomial. Definition Let ''A'' be a linearly topologized ring, separated and complete and \ the fundamental system of open ideals. Then the ring of restricted power series is defined as the projective limit of the polynomial rings over A/I_: :A \langle x_1, \dots, x_n \rangle = \varprojlim_ A/I_ _1, \dots, x_n/math>. In other words, it is the completion of the polynomial ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function (topology)
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norm (mathematics)
In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance of a vector from the origin is a norm, called the Euclidean norm, or 2-norm, which may also be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". A pseudonorm may satisfy the same axioms as a norm, with the equality replaced by an inequality "\,\leq\," in the homogeneity axiom. It can also re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metric Space
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Metric Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots in a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d\left(x_m, x_n\right) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: :#Every

Normed Algebra
In mathematics, a normed algebra ''A'' is an algebra over a field which has a sub-multiplicative norm: : \forall x,y\in A\qquad \, xy\, \le\, x\, \, y\, . Some authors require it to have a multiplicative identity 1 such that ║1║ = 1. See also * Banach algebra * Composition algebra * Division algebra * Gelfand–Mazur theorem * Hurwitz's theorem (composition algebras) In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. ... External reading {{algebra-stub Algebras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Banach Algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy \, x \, y\, \ \leq \, x\, \, \, y\, \quad \text x, y \in A. This ensures that the multiplication operation is continuous. A Banach algebra is called ''unital'' if it has an identity element for the multiplication whose norm is 1, and ''commutative'' if its multiplication is commutative. Any Banach algebra A (whether it has an identity element or not) can be embedded isometrically into a unital Banach algebra A_e so as to form a closed ideal of A_e. Often one assumes ''a priori'' that the algebra under consideration is unital: for one can develop much of the theory by considering A_e and then applying the outcome in the ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rigid Geometry
In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing ''p''-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of ''p''-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness. Definitions The basic rigid analytic object is the ''n''-dimensional unit polydisc, whose ring of functions is the Tate algebra T_n, made of power series in ''n'' variables whose coefficients approach zero in some complete nonarchimedean field ''k''. The Tate algebra is the completion of the polynomial ring in ''n'' variables under the Gauss norm (taking the supremum of coefficients), and the polydisc plays a role analogous to that of affine ''n''-space in algebraic geometry. Points on the polydisc are defined to be maximal ideals in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rigid-analytic Space
In mathematics, a rigid analytic space is an analogue of a complex analytic space over a nonarchimedean field. Such spaces were introduced by John Tate in 1962, as an outgrowth of his work on uniformizing ''p''-adic elliptic curves with bad reduction using the multiplicative group. In contrast to the classical theory of ''p''-adic analytic manifolds, rigid analytic spaces admit meaningful notions of analytic continuation and connectedness. Definitions The basic rigid analytic object is the ''n''-dimensional unit polydisc, whose ring of functions is the Tate algebra T_n, made of power series in ''n'' variables whose coefficients approach zero in some complete nonarchimedean field ''k''. The Tate algebra is the completion of the polynomial ring in ''n'' variables under the Gauss norm (taking the supremum of coefficients), and the polydisc plays a role analogous to that of affine ''n''-space in algebraic geometry. Points on the polydisc are defined to be maximal ideals in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glossary Of Commutative Algebra
This is a glossary of commutative algebra. See also list of algebraic geometry topics, glossary of classical algebraic geometry, glossary of algebraic geometry, glossary of ring theory and glossary of module theory. In this article, all rings are assumed to be commutative ring, commutative with identity 1. !$@ A B C D E F G H . ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

\xi 1, \dots, \xi N
Xi is the 14th letter of the Greek alphabet (uppercase Ξ, lowercase ξ; el, ξι), representing the voiceless consonant cluster . It is pronounced in Modern Greek, and generally or in English. In the system of Greek numerals, it has a value of 60. Xi was derived from the Phoenician letter samekh . Xi is distinct from the letter chi, which gave its form to the Latin letter X. Greek Both in classical Ancient Greek and in Modern Greek, the letter Ξ represents the consonant cluster /ks/. In some archaic local variants of the Greek alphabet, this letter was missing. Instead, especially in the dialects of most of the Greek mainland and Euboea, the cluster /ks/ was represented by Χ (which in classical Greek is chi, used for ). Because this variant of the Greek alphabet was used in Magna Graecia (the Greek colonies in Sicily and the southern part of the Italian peninsula), the Latin alphabet borrowed Χ rather than Ξ as the Latin letter that represented the /ks/ cluster ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]