Renninger Negative-result Experiment
   HOME
*





Renninger Negative-result Experiment
In quantum mechanics, the Renninger negative-result experiment is a thought experiment that illustrates some of the difficulties of understanding the nature of wave function collapse and measurement in quantum mechanics. The statement is that a particle need not be detected in order for a quantum measurement to occur, and that the lack of a particle detection can also constitute a measurement. The thought experiment was first posed in 1953 by Mauritius Renninger. It can be understood to be a refinement of the paradox presented in the Mott problem. The Mott problem The Mott problem concerns the paradox of reconciling the spherical wave function describing the emission of an alpha ray by a radioactive nucleus, with the linear tracks seen in a cloud chamber. Formulated in 1929 by Sir Nevill Francis Mott and Werner Heisenberg, it was resolved by a calculation done by Mott that showed that the correct quantum mechanical system must include the wave functions for the atoms in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pure State
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen ato ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reviews Of Modern Physics
''Reviews of Modern Physics'' (abbreviated RMP) is a quarterly peer-reviewed scientific journal published by the American Physical Society. It was established in 1929 and the current editor-in-chief is Michael Thoennessen. The journal publishes review articles, usually by established researchers, on all aspects of physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ... and related fields. The reviews are usually accessible to non-specialists and serve as introductory material to graduate students, which survey recent work, discuss key problems to be solved and provide perspectives toward the end. References External links * Publications established in 1929 Physics review journals Quarterly journals English-language journals American Physical Society academic journ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Journal Of Physics
The ''American Journal of Physics'' is a monthly, peer-reviewed scientific journal published by the American Association of Physics Teachers and the American Institute of Physics. The editor-in-chief is Beth Parks of Colgate University."Current Frequency: Monthly, 2002; and Former Frequency varies, 1940-2001" Confirmation of Editor, ISSN, CODEN, and other relevant information. Aims and scope The focus of this journal is undergraduate and graduate level physics. The intended audience is college and university physics teachers and students. Coverage includes current research in physics, instructional laboratory equipment, laboratory demonstrations, teaching methodologies, lists of resources, and book reviews. In addition, historical, philosophical and cultural aspects of physics are also covered. According to the 2021 Journal Citation Reports from Clarivate, this journal has a 2020 impact factor of 1.022. History The former title of this journal was ''American Physics Teacher'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Louis De Broglie
Louis Victor Pierre Raymond, 7th Duc de Broglie (, also , or ; 15 August 1892 – 19 March 1987) was a French physicist and aristocrat who made groundbreaking contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of electrons and suggested that all matter has wave properties. This concept is known as the de Broglie hypothesis, an example of wave–particle duality, and forms a central part of the theory of quantum mechanics. De Broglie won the Nobel Prize for Physics in 1929, after the wave-like behaviour of matter was first experimentally demonstrated in 1927. The 1925 pilot-wave model, and the wave-like behaviour of particles discovered by de Broglie was used by Erwin Schrödinger in his formulation of wave mechanics.Antony Valentini: ''On the Pilot-Wave Theory of Classical, Quantum and Subquantum Physics'', Ph.D. Thesis, ISAS, Trieste 1992 The pilot-wave model and interpretation was then abandoned, in favor of the quantum formalism, unt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zeitschrift Für Physik
''Zeitschrift für Physik'' (English: ''Journal for Physics'') is a defunct series of German peer-reviewed physics journals established in 1920 by Springer Berlin Heidelberg. The series stopped publication in 1997, when it merged with other journals to form the new ''European Physical Journal'' series. It had grown to four parts over the years. History *''Zeitschrift für Physik'' (1920–1975 ), The first three issues were published as a supplement to '' Verhandlungen der Deutschen Physikalischen Gesellschaft''. The journal split in parts A and B in 1975. :*''Zeitschrift für Physik A'' (1975–1997). The original subtitle was ''Atoms and Nuclei'' (). In 1986, it split in ''Zeitschrift für Physik A: Atomic Nuclei'' () and ''Zeitschrift für Physik D''. ''Zeitschrift für Physik A'' now continues as the ''European Physical Journal A''. :*''Zeitschrift für Physik B'' (1975–1997). This is the result of the split of ''Zeitschrift für Physik'' and the merger of ''Ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Counterfactual Definiteness
In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed (i.e., the ability to assume the existence of objects, and properties of objects, even when they have not been measured). The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities. In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this (sometimes assumed but unstated) aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results. "Counterfactual" may appear in physics discussions as a noun. What is meant in this context is "a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interaction-free Measurement
In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position, presence, or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment In quantum mechanics, the Renninger negative-result experiment is a thought experiment that illustrates some of the difficulties of understanding the nature of wave function collapse and measurement in quantum mechanics. The statement is that a pa ..., the Elitzur–Vaidman bomb-testing problem, and certain double-cavity optical systems, such as Hardy's paradox. In Quantum Computation such measurements are referred to as Counterfactual Quantum Computation, an idea introduced by physicists Graeme Mitchinson and Richard Jozsa. Examples include Keith Bowden's Counterfactual Mirror ArrayBowden, Keith G, "Classical Computation can be Counterfactual", in Aspects I, Proc ANPA19, Cambridge 1997 (published May 1999), des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws of physics are invariant (that is, identical) in all inertial frames of reference (that is, frames of reference with no acceleration). # The speed of light in vacuum is the same for all observers, regardless of the motion of the light source or the observer. Origins and significance Special relativity was originally proposed by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".Albert Einstein (1905)''Zur Elektrodynamik bewegter Körper'', ''Annalen der Physik'' 17: 891; English translatioOn the Electrodynamics of Moving Bodiesby George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920). The incompa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, (or about ). The photon belongs to the class of bosons. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, Planck proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Eins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons). For example, according to the spin-statistics theorem in relativistic quantum field theory, particles with integer spin are bosons. In contrast, particles with half-integer spin are fermions. In addition to the spin characteristic, fermions have another specific property: they possess conserved baryon or lepton quantum numbers. Therefore, what is usually referred to as the spin-statistics relation is, in fact, a spin statistics-quantum numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]