Removable Singularity
   HOME
*



picture info

Removable Singularity
In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point. For instance, the (unnormalized) sinc function : \text(z) = \frac has a singularity at . This singularity can be removed by defining \text(0) := 1, which is the limit of as tends to 0. The resulting function is holomorphic. In this case the problem was caused by being given an indeterminate form. Taking a power series expansion for \frac around the singular point shows that : \text(z) = \frac\left(\sum_^ \frac \right) = \sum_^ \frac = 1 - \frac + \frac - \frac + \cdots. Formally, if U \subset \mathbb C is an open subset of the complex plane \mathbb C, a \in U a point of U, and f: U\setminus \ \rightarrow \mathbb C is a holomorphic function, then a is called a removable singularity for f if there exists a holomorp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graph Of X Squared Undefined At X Equals 2
Graph may refer to: Mathematics * Graph (discrete mathematics), a structure made of vertices and edges ** Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discrete mathematics *Graph of a function *Graph of a relation *Graph paper *Chart, a means of representing data (also called a graph) Computing *Graph (abstract data type), an abstract data type representing relations or connections *graph (Unix), Unix command-line utility * Conceptual graph, a model for knowledge representation and reasoning Other uses * HMS ''Graph'', a submarine of the UK Royal Navy See also * Complex network * Graf * Graff (other) * Graph database * Grapheme, in linguistics * Graphemics * Graphic (other) *-graphy (suffix from the Greek for "describe," "write" or "draw") * List of information graphics software *Statistical graphics Statistical graphics, also known as statistical graphical techniques, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bernhard Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Biography Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Functions
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its domai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Removable Discontinuity
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all Function (mathematics), functions are Continuous function, continuous. If a function is not continuous at a point in its Domain of a function, domain, one says that it has a discontinuity there. The Set theory, set of all points of discontinuity of a function may be a discrete set, a dense set, or even the entire domain of the function. This article describes the classification of discontinuities in the simplest case of functions of a single Real number, real Variable-sweep wing, variable taking real values. The Oscillation (mathematics), oscillation of a function at a point quantifies these discontinuities as follows: * in a removable discontinuity, the distance that the value of the function is off by is the oscillation; * in a jump discontinuity, the size of the jump is the oscillation (assuming that the value ''at'' the point lies between these limits of the two sides); * i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Capacity
In the mathematical discipline of complex analysis, the analytic capacity of a compact subset ''K'' of the complex plane is a number that denotes "how big" a bounded analytic function on C \ ''K'' can become. Roughly speaking, ''γ''(''K'') measures the size of the unit ball of the space of bounded analytic functions outside ''K''. It was first introduced by Lars Ahlfors in the 1940s while studying the removability of singularities of bounded analytic functions. Definition Let ''K'' ⊂ C be compact. Then its analytic capacity is defined to be :\gamma(K) = \sup \ Here, \mathcal^\infty (U) denotes the set of bounded analytic functions ''U'' → C, whenever ''U'' is an open subset of the complex plane. Further, : f'(\infty):= \lim_z\left(f(z)-f(\infty)\right) : f(\infty):= \lim_f(z) Note that f'(\infty) = g'(0), where g(z) = f(1/z). However, usually f'(\infty)\neq \lim_ f'(z). If ''A'' ⊂ C is an arbitrary set, then we define :\gamma(A) = \sup \. Removable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Theorem
In complex analysis, Picard's great theorem and Picard's little theorem are related theorems about the range of an analytic function. They are named after Émile Picard. The theorems Little Picard Theorem: If a function f: \mathbb \to\mathbb is entire and non-constant, then the set of values that f(z) assumes is either the whole complex plane or the plane minus a single point. Sketch of Proof: Picard's original proof was based on properties of the modular lambda function, usually denoted by λ, and which performs, using modern terminology, the holomorphic universal covering of the twice punctured plane by the unit disc. This function is explicitly constructed in the theory of elliptic functions. If ''f'' omits two values, then the composition of ''f'' with the inverse of the modular function maps the plane into the unit disc which implies that ''f'' is constant by Liouville's theorem. This theorem is a significant strengthening of Liouville's theorem which states that the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Essential Singularity
In complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits odd behavior. The category ''essential singularity'' is a "left-over" or default group of isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity that may be dealt with in some manner – removable singularities and poles. In practice some include non-isolated singularities too; those do not have a residue. Formal description Consider an open subset U of the complex plane \mathbb. Let a be an element of U, and f\colon U\setminus\\to \mathbb a holomorphic function. The point a is called an ''essential singularity'' of the function f if the singularity is neither a pole nor a removable singularity. For example, the function f(z)=e^ has an essential singularity at z=0. Alternative descriptions Let \;a\; be a complex number, assume that f(z) is not defined at \;a\; but is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pole (complex Analysis)
In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. In some sense, it is the simplest type of singularity. Technically, a point is a pole of a function if it is a zero of the function and is holomorphic in some neighbourhood of (that is, complex differentiable in a neighbourhood of ). A function is meromorphic in an open set if for every point of there is a neighborhood of in which either or is holomorphic. If is meromorphic in , then a zero of is a pole of , and a pole of is a zero of . This induces a duality between ''zeros'' and ''poles'', that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its poles equals the sum of the multiplicities of its zeros. Definitions A function of a complex variable is holomorphic in an open domai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Proof That Holomorphic Functions Are Analytic
In complex analysis, a complex-valued function f of a complex variable z: *is said to be holomorphic at a point a if it is differentiable at every point within some open disk centered at a, and * is said to be analytic at a if in some open disk centered at a it can be expanded as a convergent power series f(z)=\sum_^\infty c_n(z-a)^n (this implies that the radius of convergence is positive). One of the most important theorems of complex analysis is that holomorphic functions are analytic and vice versa. Among the corollaries of this theorem are * the identity theorem that two holomorphic functions that agree at every point of an infinite set S with an accumulation point inside the intersection of their domains also agree everywhere in every connected open subset of their domains that contains the set S, and * the fact that, since power series are infinitely differentiable, so are holomorphic functions (this is in contrast to the case of real differentiable functions), and * t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Function
In mathematics, a function ''f'' defined on some set ''X'' with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number ''M'' such that :, f(x), \le M for all ''x'' in ''X''. A function that is ''not'' bounded is said to be unbounded. If ''f'' is real-valued and ''f''(''x'') ≤ ''A'' for all ''x'' in ''X'', then the function is said to be bounded (from) above by ''A''. If ''f''(''x'') ≥ ''B'' for all ''x'' in ''X'', then the function is said to be bounded (from) below by ''B''. A real-valued function is bounded if and only if it is bounded from above and below. An important special case is a bounded sequence, where ''X'' is taken to be the set N of natural numbers. Thus a sequence ''f'' = (''a''0, ''a''1, ''a''2, ...) is bounded if there exists a real number ''M'' such that :, a_n, \le M for every natural number ''n''. The set of all bounded sequences forms the sequence space l^\infty. The definition of bound ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighborhood (topology)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is also equivalent to the point p \in X belonging to the topological interior of V in X. The neighbourhood V need be an open subset X, but when V is open in X then it is called an . Some authors have been known to require neighbourhoods to be open, so it is important to note conventions. A set that is a neighbourhood of each of its points is open since it can be expressed as the union of open sets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates—the magnitude or ''modulus'' of the product is the product of the two absolute values, or moduli, and the angle or ''argument'' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes known as the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol ''z'', which can be separated into its real (''x'') and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]