Relative Permeability
   HOME
*





Relative Permeability
In multiphase flow in porous media, the relative permeability of a phase is a dimensionless measure of the effective permeability of that phase. It is the ratio of the effective permeability of that phase to the absolute permeability. It can be viewed as an adaptation of Darcy's law to multiphase flow. For two-phase flow in porous media given steady-state conditions, we can write :q_i = -\frac \nabla P_i \qquad \text \quad i=1,2 where q_i is the flux, \nabla P_i is the pressure drop, \mu_i is the viscosity. The subscript i indicates that the parameters are for phase i. k_i is here the phase permeability (i.e., the effective permeability of phase i), as observed through the equation above. Relative permeability, k_, for phase i is then defined from k_i = k_k, as :k_ = k_i / k where k is the permeability of the porous medium in single-phase flow, i.e., the absolute permeability. Relative permeability must be between zero and one. In applications, relative permeability is of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiphase Flow
In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena. These phases may consist of one chemical component (e.g. flow of water and water vapour), or several different chemical components (e.g. flow of oil and water). A phase is classified as ''continuous'' if it occupies a continually connected region of space (as opposed to ''disperse'' if the phase occupies disconnected regions of space). The continuous phase may be either gaseous or a liquid. The disperse phase can consist of a solid, liquid or gas. Two general topologies can be identified: ''disperse'' flows and ''separated'' flows.'' ''The former consists of finite particles, drops or bubbles distributed within a continuous phase, whereas the latter consists of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LET Model For Relative Permeability
Let or LET may refer to: Sports * Let serve, when the served object in certain racket sports hits the net and lands in the correct service court, such as; ** Let (badminton) ** Let (pickleball) ** Let (tennis) * Ladies European Tour, the ladies professional golf tour of Europe Terminology * -let as an English diminutive suffix * Let expression, a name binding construct in computer programming languages * Let statement, a statement used in word problems requiring algebraic equations * Letting, a system of payment for the temporary use of something owned by someone else, also known as "rental" People, titles, characters * Licensed Engineering Technologist * Let, a fictional character from the anime series ''Rave Master'' Places, locations * County Leitrim, Ireland, Chapman code LET * Let, West Virginia * Leț, a village in Boroșneu Mare Commune, Covasna County, Romania * Alfredo Vásquez Cobo International Airport (IATA code LET), Leticia, Colombia * Lei Tung station (stat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Buckley–Leverett Equation
In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. The Buckley–Leverett equation or the Buckley–Leverett ''displacement'' describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir. This equation can be derived from the mass conservation equations of two-phase flow, under the assumptions listed below. Equation In a quasi-1D domain, the Buckley–Leverett equation is given by: : \frac + \frac\left( \frac f_w(S_w) \right) = 0, where S_w(x,t) is the wetting-phase (water) saturation, Q is the total flow rate, \phi is the rock porosity, A is the area of the cross-section in the sample volume, and f_w(S_w) is the fractional flow function of the wetting phase. Typically, f_w(S_w) is an 'S'-shaped, nonlinear function of the saturation S_w, which characterizes the relative mobilities of the two phases: : f_w(S_w) = \frac = \fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Drainage
Drainage is the natural or artificial removal of a surface's water and sub-surface water from an area with excess of water. The internal drainage of most agricultural soils is good enough to prevent severe waterlogging (anaerobic conditions that harm root growth), but many soils need artificial drainage to improve production or to manage water supplies. History Early history The Indus Valley civilization had sewerage and drainage systems. All houses in the major cities of Harappa and Mohenjo-daro had access to water and drainage facilities. Waste water was directed to covered gravity sewers, which lined the major streets. 18th and 19th century The invention of hollow-pipe drainage is credited to Sir Hugh Dalrymple, who died in 1753. Current practices Geotextiles New storm water drainage systems incorporate geotextile filters that retain and prevent fine grains of soil from passing into and clogging the drain. Geotextiles are synthetic textile fabrics specially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imbibition
Imbibition is a special type of diffusion that takes place when liquid is absorbed by solids-colloids causing an increase in volume. Water surface potential movement takes place along a concentration gradient; some dry materials absorb water. A gradient between the absorbent and the liquid is essential for imbibition. For a substance to imbibe a liquid, there must first be some attraction between them. Imbibition occurs when a wetting fluid displaces a non-wetting fluid, the opposite of drainage in which a non-wetting phase displaces the wetting fluid. The two processes are governed by different mechanisms. Imbibition is also a type of diffusion since water movement is along the concentration gradient. The seeds and other such materials have almost no water hence they absorb water easily. Water potential gradient between the absorbent and liquid imbibed is essential for imbibition. Examples One example of imbibition in nature is the absorption of water by hydrophilic colloids. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Capillary Pressure
In fluid statics, capillary pressure () is the pressure between two immiscible fluids in a thin tube (see capillary action), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and industrial purposes (namely microfluidic design and oil extraction from porous rock). It is also observed in natural phenomena. Definition Capillary pressure is defined as: :p_c=p_-p_ where: :p_is the capillary pressure :p_ is the pressure of the non-wetting phase :p_ is the pressure of the wetting phase The wetting phase is identified by its ability to preferentially diffuse across the capillary walls before the non-wetting phase. The "wettability" of a fluid depends on its surface tension, the forces that drive a fluid's tendency to take up the minimal amount of space possible, and it is determined by the contact angle of the fluid.Fan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Leverett J-function
In petroleum engineering, the Leverett ''J''-function is a dimensionless function of water saturation describing the capillary pressure, :J(S_w) = \frac where S_w is the water saturation measured as a fraction, p_c is the capillary pressure (in pascal), k is the permeability (measured in m²), \phi is the porosity (0-1), \gamma is the surface tension (in N/m) and \theta is the contact angle. The function is important in that it is constant for a given saturation within a reservoir, thus relating reservoir properties for neighboring beds. The Leverett ''J''-function is an attempt at extrapolating capillary pressure data for a given rock to rocks that are similar but with differing permeability, porosity and wetting properties. It assumes that the porous rock can be modelled as a bundle of non-connecting capillary tubes, where the factor \sqrt is a characteristic length of the capillaries' radii. This function is also widely used in modeling two-phase flow of proton-excha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's axis than near its walls. Experiments show that some stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube with a constant rate of flow, the strength of the compensating force is proportional to the fluid's viscosity. In general, viscosity depends on a fluid's state, such as its temperature, pressure, and rate of deformation. However, the dependence on some of these properties is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Porosity
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure the "accessible void", the total amount of void space accessible from the surface (cf. closed-cell foam). There are many ways to test porosity in a substance or part, such as industrial CT scanning. The term porosity is used in multiple fields including pharmaceutics, ceramics, metallurgy, materials, manufacturing, petrophysics, hydrology, earth sciences, soil mechanics, and engineering. Void fraction in two-phase flow In gas-liquid two-phase flow, the void fraction is defined as the fraction of the flow-channel volume that is occupied by the gas phase or, alternatively, as the fraction of the cross-sectional area of the channel that is occupied by the gas phase. Void fraction usually varies from location to location in the flow ch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TEM-function
In petroleum engineering, TEM (true effective mobility), also called TEM-function developed by Abouzar Mirzaei-Paiaman, is a criterion to characterize dynamic two-phase flow characteristics of rocks (or dynamic rock quality). TEM is a function of relative permeability, porosity, absolute permeability and fluid viscosity, and can be determined for each fluid phase separately. TEM-function has been derived from Darcy's law for multiphase flow. :\mathit = \frac in which k is the absolute permeability, k_\mathit is the relative permeability, φ is the porosity, and μ is the fluid viscosity. Rocks with better fluid dynamics (i.e., experiencing a lower pressure drop in conducting a fluid phase) have higher TEM versus saturation curves. Rocks with lower TEM versus saturation curves resemble low quality systems. TEM-function in analyzing relative permeability data is analogous with Leverett J-function In petroleum engineering, the Leverett ''J''-function is a dimensionless function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morris Muskat
Morris Muskat (21 April 1906 – 20 June 1998) was an American petroleum engineer. Muskat refined Darcy's equation for single phase flow, and this change made it suitable for the petroleum industry. Based on experimental results worked out by his colleagues, Muskat and Milan W. Meres also generalized Darcy's law to cover multiphase flow of water, oil and gas in the porous medium of a petroleum reservoir. The generalized flow equation provides the analytical foundation for reservoir engineering that exists to this day. Early life and career Muskat was born in Riga, Russian Empire. He came to the United States with his family in 1911, and became an American citizen in 1914. Muskat attended Marietta College and Ohio State University, then taught physics at Bowling Green University. He earned his doctorate in physics from the California Institute of Technology in 1929. After graduating from Caltech, Muskat joined Gulf Research & Development Company where he started as a Researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]