Regular Semigroup
   HOME
*





Regular Semigroup
In mathematics, a regular semigroup is a semigroup ''S'' in which every element is regular, i.e., for each element ''a'' in ''S'' there exists an element ''x'' in ''S'' such that . Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations. History Regular semigroups were introduced by J. A. Green in his influential 1951 paper "On the structure of semigroups"; this was also the paper in which Green's relations were introduced. The concept of ''regularity'' in a semigroup was adapted from an analogous condition for rings, already considered by John von Neumann. It was Green's study of regular semigroups which led him to define his celebrated relations. According to a footnote in Green 1951, the suggestion that the notion of regularity be applied to semigroups was first made by David Rees. The term inversive semigroup (French: demi-groupe inversif) was historically used as synonym in the pap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. The closure axiom is implied by the definition of a binary operation on a set. Some authors thus omit it and specify three axioms for a group and only one axiom (associativity) for a semigroup. As in the case of groups or magmas, the semigroup operation need not be commutative, so ''x''·''y'' is not necessarily equal to ''y''·''x''; a well-known example of an operation that is as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Inverse Semigroup
__NOTOC__ In abstract algebra, the set of all partial bijections on a set ''X'' ( one-to-one partial transformations) forms an inverse semigroup, called the symmetric inverse semigroup (actually a monoid) on ''X''. The conventional notation for the symmetric inverse semigroup on a set ''X'' is \mathcal_X or \mathcal_X. In general \mathcal_X is not commutative. Details about the origin of the symmetric inverse semigroup are available in the discussion on the origins of the inverse semigroup. Finite symmetric inverse semigroups When ''X'' is a finite set , the inverse semigroup of one-to-one partial transformations is denoted by ''C''''n'' and its elements are called charts or partial symmetries. The notion of chart generalizes the notion of permutation. A (famous) example of (sets of) charts are the hypomorphic mapping sets from the reconstruction conjecture in graph theory. The cycle notation of classical, group-based permutations generalizes to symmetric inverse semigroups by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clarendon Press
Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books by decree in 1586, it is the second oldest university press after Cambridge University Press. It is a department of the University of Oxford and is governed by a group of 15 academics known as the Delegates of the Press, who are appointed by the vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, opposite Somerville College, in the inner suburb of Jericho. For the last 500 years, OUP has primarily focused on the publication of pedagogical texts and c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Inverse
In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element ''x'' is an element ''y'' that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of matrices than invertible matrices. Generalized inverses can be defined in any mathematical structure that involves associative multiplication, that is, in a semigroup. This article describes generalized inverses of a matrix A. A matrix A^\mathrm \in \mathbb^ is a generalized inverse of a matrix A \in \mathbb^ if AA^\mathrmA = A. A generalized inverse exists for an arbitrary matrix, and when a matrix has a regular inverse, this inverse is its unique generalized inverse. Motivation Consider the linear system :Ax = y where A is an n \times m matrix and y \in \mathcal R(A), the column space of A. If A is nonsingular (which implies n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nambooripad Order
In mathematics, Nambooripad order (also called Nambooripad's partial order) is a certain natural partial order on a regular semigroup discovered by K S S Nambooripad in late seventies. Since the same partial order was also independently discovered by Robert E Hartwig, some authors refer to it as Hartwig–Nambooripad order. "Natural" here means that the order is defined in terms of the operation on the semigroup. In general Nambooripad's order in a regular semigroup is not compatible with multiplication. It is compatible with multiplication only if the semigroup is pseudo-inverse (locally inverse). Precursors Nambooripad's partial order is a generalisation of an earlier known partial order on the set of idempotents in any semigroup. The partial order on the set ''E'' of idempotents in a semigroup ''S'' is defined as follows: For any ''e'' and ''f'' in ''E'', ''e'' ≤ ''f'' if and only if ''e'' = ''ef'' = ''fe''. Vagner in 1952 had extended th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Classes Of Semigroups
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the semigr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biordered Set
A biordered set (otherwise known as boset) is a mathematical object that occurs in the description of the structure of the set of idempotents in a semigroup. The set of idempotents in a semigroup is a biordered set and every biordered set is the set of idempotents of some semigroup. A regular biordered set is a biordered set with an additional property. The set of idempotents in a regular semigroup is a regular biordered set, and every regular biordered set is the set of idempotents of some regular semigroup. History The concept and the terminology were developed by K S S Nambooripad in the early 1970s. In 2002, Patrick Jordan introduced the term boset as an abbreviation of biordered set. The defining properties of a biordered set are expressed in terms of two quasiorders defined on the set and hence the name biordered set. According to Mohan S. Putcha, "The axioms defining a biordered set are quite complicated. However, considering the general nature of semigroups, it is ra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


E-dense Semigroup
__NOTOC__ In abstract algebra, an ''E''-dense semigroup (also called an ''E''-inversive semigroup) is a semigroup in which every element ''a'' has at least one weak inverse ''x'', meaning that ''xax'' = ''x''. The notion of weak inverse is (as the name suggests) weaker than the notion of inverse used in a regular semigroup (which requires that ''axa''=''a''). The above definition of an ''E''-inversive semigroup ''S'' is equivalent with any of the following: * for every element ''a'' ∈ ''S'' there exists another element ''b'' ∈ ''S'' such that ''ab'' is an idempotent. * for every element ''a'' ∈ ''S'' there exists another element ''c'' ∈ ''S'' such that ''ca'' is an idempotent. This explains the name of the notion as the set of idempotents of a semigroup ''S'' is typically denoted by ''E''(''S''). The concept of ''E''-inversive semigroup was introduced by Gabriel Thierrin in 1955. Some authors use ''E''-dense to refer only to ''E''-inversive semigroups in which the idempote ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eventually Regular Semigroup
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersection (set Theory)
In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The number 9 is in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid Russell's paradox (see ). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate class" is often used in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]