Regular Semi-algebraic System
   HOME
*





Regular Semi-algebraic System
In computer algebra, a regular semi-algebraic system is a particular kind of triangular system of multivariate polynomials over a real closed field. Introduction Regular chains and triangular decompositions are fundamental and well-developed tools for describing the complex solutions of polynomial systems. The notion of a regular semi-algebraic system is an adaptation of the concept of a regular chain focusing on solutions of the real analogue: semi-algebraic systems. Any semi-algebraic system S can be decomposed into finitely many regular semi-algebraic systems S_1, \ldots, S_e such that a point (with real coordinates) is a solution of S if and only if it is a solution of one of the systems S_1, \ldots, S_e.Changbo Chen, James H. Davenport, John P. May, Marc Moreno-Maza, Bican Xia, Rong XiaoTriangular decomposition of semi-algebraic systems Proceedings of 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC 2010), ACM Press, pp. 187–194, 2010. Formal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variables that have no given value and are manipulated as symbols. Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programming language (usually different from the languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Chain
In computer algebra, a regular chain is a particular kind of triangular set in a multivariate polynomial ring over a field. It enhances the notion of characteristic set. Introduction Given a linear system, one can convert it to a triangular system via Gaussian elimination. For the non-linear case, given a polynomial system F over a field, one can convert (decompose or triangularize) it to a finite set of triangular sets, in the sense that the algebraic variety ''V''(F) is described by these triangular sets. A triangular set may merely describe the empty set. To fix this degenerated case, the notion of regular chain was introduced, independently by Kalkbrener (1993), Yang and Zhang (1994). Regular chains also appear in Chou and Gao (1992). Regular chains are special triangular sets which are used in different algorithms for computing unmixed-dimensional decompositions of algebraic varieties. Without using factorization, these decompositions have better properties that the ones ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Decomposition
In computer algebra, a triangular decomposition of a polynomial system is a set of simpler polynomial systems such that a point is a solution of if and only if it is a solution of one of the systems . When the purpose is to describe the solution set of in the algebraic closure of its coefficient field, those simpler systems are regular chains. If the coefficients of the polynomial systems are real numbers, then the real solutions of can be obtained by a triangular decomposition into regular semi-algebraic systems. In both cases, each of these simpler systems has a triangular shape and remarkable properties, which justifies the terminology. History The Characteristic Set Method is the first factorization-free algorithm, which was proposed for decomposing an algebraic variety into equidimensional components. Moreover, the Author, Wen-Tsun Wu, realized an implementation of this method and reported experimental data in his 1987 pioneer article titled "A zero structure the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Chain
In computer algebra, a regular chain is a particular kind of triangular set in a multivariate polynomial ring over a field. It enhances the notion of characteristic set. Introduction Given a linear system, one can convert it to a triangular system via Gaussian elimination. For the non-linear case, given a polynomial system F over a field, one can convert (decompose or triangularize) it to a finite set of triangular sets, in the sense that the algebraic variety ''V''(F) is described by these triangular sets. A triangular set may merely describe the empty set. To fix this degenerated case, the notion of regular chain was introduced, independently by Kalkbrener (1993), Yang and Zhang (1994). Regular chains also appear in Chou and Gao (1992). Regular chains are special triangular sets which are used in different algorithms for computing unmixed-dimensional decompositions of algebraic varieties. Without using factorization, these decompositions have better properties that the ones ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Real Closed Field
In mathematics, a real closed field is a field ''F'' that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definitions A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' of ''F'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Algebraic Geometry
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory and r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equations
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in French an ''équation'' is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation. ''Solving'' an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables. An equation is written as two expressions, connected by an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomials
In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]