Recognizable Set
   HOME
*





Recognizable Set
In computer science, more precisely in automata theory, a recognizable set of a monoid is a subset that can be distinguished by some morphism to a finite monoid. Recognizable sets are useful in automata theory, formal languages and algebra. This notion is different from the notion of recognizable language. Indeed, the term "recognizable" has a different meaning in computability theory. Definition Let N be a monoid, a subset S\subseteq N is recognized by a monoid M if there exists a morphism \phi from N to M such that S=\phi^(\phi(S)), and recognizable if it is recognized by some finite monoid. This means that there exists a subset T of M (not necessarily a submonoid of M) such that the image of S is in T and the image of N \setminus S is in M \setminus T. Example Let A be an alphabet: the set A^* of words over A is a monoid, the free monoid on A. The recognizable subsets of A^* are precisely the regular languages. Indeed, such a language is recognized by the transition monoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Complement
In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^\complement = U \setminus A. Or formally: A^\complement = \. The absolute complement of is u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Set
In computer science, more precisely in automata theory, a rational set of a monoid is an element of the minimal class of subsets of this monoid that contains all finite subsets and is closed under union, product and Kleene star. Rational sets are useful in automata theory, formal languages and algebra. A rational set generalizes the notion of rational (regular) language (understood as defined by regular expressions) to monoids that are not necessarily free. Definition Let (N,\cdot) be a monoid with identity element e. The set \mathrm(N) of rational subsets of N is the smallest set that contains every finite set and is closed under * union: if A,B\in \mathrm(N) then A\cup B\in \mathrm(N) * product: if A,B\in \mathrm(N) then A\cdot B=\\in\mathrm(N) * Kleene star: if A\in \mathrm(N) then A^*=\bigcup_^\infty A^i \in\mathrm(N) where A^0=\ is the singleton containing the identity element, and where A^=A^n \cdot A. This means that any rational subset of N can be obtained by taking a fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Index
In mathematics, specifically group theory, the index of a subgroup ''H'' in a group ''G'' is the number of left cosets of ''H'' in ''G'', or equivalently, the number of right cosets of ''H'' in ''G''. The index is denoted , G:H, or :H/math> or (G:H). Because ''G'' is the disjoint union of the left cosets and because each left coset has the same size as ''H'', the index is related to the orders of the two groups by the formula :, G, = , G:H, , H, (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index , G:H, measures the "relative sizes" of ''G'' and ''H''. For example, let G = \Z be the group of integers under addition, and let H = 2\Z be the subgroup consisting of the even integers. Then 2\Z has two cosets in \Z, namely the set of even integers and the set of odd integers, so the index , \Z:2\Z, is 2. More generally, , \Z:n\Z, = n for any positive integer ''n''. When ''G'' is finite, the formula may be written as , G:H, = , G, /, H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finitely Generated Group
In algebra, a finitely generated group is a group ''G'' that has some finite generating set ''S'' so that every element of ''G'' can be written as the combination (under the group operation) of finitely many elements of ''S'' and of inverses of such elements. By definition, every finite group is finitely generated, since ''S'' can be taken to be ''G'' itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated. Examples * Every quotient of a finitely generated group ''G'' is finitely generated; the quotient group is generated by the images of the generators of ''G'' under the canonical projection. * A subgroup of a finitely generated group need not be finitely generated. * A group that is generated by a single element is called cyclic. Every infinite cyclic group is isomorphic to the additive group of the integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleene Star
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V is written as ''V^*''. It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions". # If V is a set of strings, then ''V^*'' is defined as the smallest superset of V that contains the empty string \varepsilon and is closed under the string concatenation operation. # If V is a set of symbols or characters, then ''V^*'' is the set of all strings over symbols in V, including the empty string \varepsilon. The set ''V^*'' can also be described as the set containing the empty string and all finite-length strings that can be generated by concatenating arbitrary e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Set
In computer science, more precisely in automata theory, a rational set of a monoid is an element of the minimal class of subsets of this monoid that contains all finite subsets and is closed under union, product and Kleene star. Rational sets are useful in automata theory, formal languages and algebra. A rational set generalizes the notion of rational (regular) language (understood as defined by regular expressions) to monoids that are not necessarily free. Definition Let (N,\cdot) be a monoid with identity element e. The set \mathrm(N) of rational subsets of N is the smallest set that contains every finite set and is closed under * union: if A,B\in \mathrm(N) then A\cup B\in \mathrm(N) * product: if A,B\in \mathrm(N) then A\cdot B=\\in\mathrm(N) * Kleene star: if A\in \mathrm(N) then A^*=\bigcup_^\infty A^i \in\mathrm(N) where A^0=\ is the singleton containing the identity element, and where A^=A^n \cdot A. This means that any rational subset of N can be obtained by taking a fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Left Quotient
In mathematics and computer science, the right quotient (or simply quotient) of a language L_1 with respect to language L_2 is the language consisting of strings ''w'' such that ''wx'' is in L_1 for some string ''x'' in Formally: L_1 / L_2 = \ In other words, we take all the strings in L_1 that have a suffix in L_2, and remove this suffix. Similarly, the left quotient of L_1 with respect to L_2 is the language consisting of strings ''w'' such that ''xw'' is in L_1 for some string ''x'' in L_2. Formally: L_2 \backslash L_1 = \ In other words, we take all the strings in L_1 that have a prefix in L_2, and remove this prefix. Note that the operands of \backslash are in reverse order: the first operand is L_2 and L_1 is second. Example Consider L_1 = \ and L_2 = \. Now, if we insert a divider into an element of L_1, the part on the right is in L_2 only if the divider is placed adjacent to a ''b'' (in which case ''i'' ≤ ''n'' and ''j'' = ''n'') or adjacent to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]