Reciprocity Law
   HOME
*





Reciprocity Law
In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials f(x) with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial f(x) = x^2 + ax + b splits into linear terms when reduced mod p. That is, it determines for which prime numbers the relationf(x) \equiv f_p(x) = (x-n_p)(x-m_p) \text (\text p)holds. For a general reciprocity lawpg 3, it is defined as the rule determining which primes p the polynomial f_p splits into linear factors, denoted \text\. There are several different ways to express reciprocity laws. The early reciprocity laws found in the 19th century were usually expressed in terms of a power residue symbol (''p''/''q'') generalizing the quadratic reciprocity symbol, that describes when a prime number is an ''n''th power residue modulo another prime, and gave a relation between (''p''/''q'') and (''q''/''p''). Hilbert refo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Quadratic Reciprocity
In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is: This law, together with its supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form x^2\equiv a \bmod p for an odd prime p; that is, to determine the "perfect squares" modulo p. However, this is a non-constructive result: it gives no help at all for finding a ''specific'' solution; for this, other methods are required. For example, in the case p\equiv 3 \bmod 4 using Euler's criterion one can give an explicit formula for the "square roots" modulo p of a quadratic residue a, namely, :\pm a^ indeed, :\left (\pm a^ \right )^2=a^=a\cdot a^\equiv a\left(\frac\right)=a \bmod p. This formula only works if it is k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Prime
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: : 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . History and motivation In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent ''p'' if ''p'' is regular. This focused attention on the irregular primes. In 1852, Genocchi was able to prove that the first case of Fermat's Last Theorem is true for an exponent ''p'', if is not an irregular pair. Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either or fails to be an irregular pair. Kummer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stanley's Reciprocity Theorem
In combinatorial mathematics, Stanley's reciprocity theorem, named after MIT mathematician Richard P. Stanley, states that a certain functional equation is satisfied by the generating function of any rational cone (defined below) and the generating function of the cone's interior. Definitions A rational cone is the set of all ''d''-tuples :(''a''1, ..., ''a''''d'') of nonnegative integers satisfying a system of inequalities :M\left begina_1 \\ \vdots \\ a_d\end\right\geq \left begin0 \\ \vdots \\ 0\end\right/math> where ''M'' is a matrix of integers. A ''d''-tuple satisfying the corresponding ''strict'' inequalities, i.e., with ">" rather than "≥", is in the ''interior'' of the cone. The generating function of such a cone is :F(x_1,\dots,x_d)=\sum_ x_1^\cdots x_d^. The generating function ''F''int(''x''1, ..., ''x''''d'') of the interior of the cone is defined in the same way, but one sums over ''d''-tuples in the interior rather than in the whole cone. It can be s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Ninth Problem
Hilbert's ninth problem, from the list of 23 Hilbert's problems (1900), asked to find the most general reciprocity law for the norm residues of ''k''-th order in a general algebraic number field, where ''k'' is a power of a prime. Progress made The problem was partially solved by Emil Artin (1924; 1927; 1930) by establishing the Artin reciprocity law which deals with abelian extensions of algebraic number fields. Together with the work of Teiji Takagi and Helmut Hasse (who established the more general Hasse reciprocity law), this led to the development of the class field theory, realizing Hilbert's program in an abstract fashion. Certain explicit formulas for norm residues were later found by Igor Shafarevich (1948; 1949; 1950). The non-abelian generalization, also connected with Hilbert's twelfth problem, is one of the long-standing challenges in number theory and is far from being complete. See also *List of unsolved problems in mathematics Many mathematical p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Langlands Program
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics." The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the fundamental lemma of the project posits a direct connection between the generalized fundamental representation of a finite field with its group extension to the automorphic forms under which it is invariant. This is accomplished through abstraction to higher dimensional integrati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelianization
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Idele Class Group
In abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group ''G'' over a number field ''K'', and the adele ring ''A'' = ''A''(''K'') of ''K''. It consists of the points of ''G'' having values in ''A''; the definition of the appropriate topology is straightforward only in case ''G'' is a linear algebraic group. In the case of ''G'' being an abelian variety, it presents a technical obstacle, though it is known that the concept is potentially useful in connection with Tamagawa numbers. Adelic algebraic groups are widely used in number theory, particularly for the theory of automorphic representations, and the arithmetic of quadratic forms. In case ''G'' is a linear algebraic group, it is an affine algebraic variety in affine ''N''-space. The topology on the adelic algebraic group G(A) is taken to be the subspace topology in ''A''''N'', the Cartesian product of ''N'' copies of the adele ring. In this case, G(A) is a topological group. Hist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Artin Map
The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem. Statement Let L/K be a Galois extension of global fields and C_L stand for the idèle class group of L. One of the statements of the Artin reciprocity law is that there is a canonical isomorphism called the global symbol mapNeukirch (1999) p.391 : \theta: C_K/ \to \operatorname(L/K)^, where \text denotes the abelianization of a group. The map \theta is defined by assembling the maps called the local Artin symbol, the local reciprocity map or the norm residu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE