Rationalisation (mathematics)
   HOME
*





Rationalisation (mathematics)
In elementary algebra, root rationalisation is a process by which radicals in the denominator of an algebraic fraction are eliminated. If the denominator is a monomial in some radical, say a^k, with , rationalisation consists of multiplying the numerator and the denominator by \sqrt , and replacing ^n by (this is allowed, as, by definition, a th root of is a number that has as its th power). If , one writes with (Euclidean division), and ^k = x^q\sqrt ^r; then one proceeds as above by multiplying by \sqrt . If the denominator is linear in some square root, say a+b\sqrt, rationalisation consists of multiplying the numerator and the denominator by a-b\sqrt, and expanding the product in the denominator. This technique may be extended to any algebraic denominator, by multiplying the numerator and the denominator by all algebraic conjugates of the denominator, and expanding the new denominator into the norm of the old denominator. However, except in special cases, the resul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elementary Algebra
Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entails use of algebraic notation and an understanding of the general rules of the operations introduced in arithmetic. Unlike abstract algebra, elementary algebra is not concerned with algebraic structures outside the realm of real and complex numbers. It is typically taught to secondary school students and builds on their understanding of arithmetic. The use of variables to denote quantities allows general relationships between quantities to be formally and concisely expressed, and thus enables solving a broader scope of problems. Many quantitative relationships in science and mathematics are expressed as algebraic equations. Algebraic notation Algebraic notation describes the rules and conventions for writing mathematical expressio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conjugate (algebra)
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element , over a field extension , are the roots of the minimal polynomial of over . Conjugate elements are commonly called conjugates in contexts where this is not ambiguous. Normally itself is included in the set of conjugates of . Equivalently, the conjugates of are the images of under the field automorphisms of that leave fixed the elements of . The equivalence of the two definitions is one of the starting points of Galois theory. The concept generalizes the complex conjugation, since the algebraic conjugates over \R of a complex number are the number itself and its ''complex conjugate''. Example The cube roots of the number one are: : \sqrt = \begin1 \\ pt-\frac+\fraci \\ pt-\frac-\fraci \end The latter two roots are conjugate elements in with minimal polynomial : \left(x+\frac\right)^2+\frac=x^2+x+1. Properties If ''K'' is given inside an alg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

George Chrystal
George Chrystal FRSE FRS (8 March 1851 – 3 November 1911) was a Scottish mathematician. He is primarily know for his books on algebra and his studies of seiches (wave patterns in large inland bodies of water) which earned him a Gold Medal from the Royal Society of London that was confirmed shortly after his death. Life He was born in Old Meldrum on 8 March 1851, the son of Margaret (née Burr) and William Chrystal, a wealthy farmer and grain merchant. He was educated at Aberdeen Grammar School and the University of Aberdeen. In 1872, he moved to study under James Clerk Maxwell at Peterhouse, Cambridge. He graduated Second Wrangler in 1875, joint with William Burnside, and was elected a fellow of Corpus Christi. He was appointed to the Regius Chair of Mathematics at the University of St Andrews in 1877, and then in 1879 to the Chair in Mathematics at the University of Edinburgh. In 1911, he was awarded the Royal Medal of the Royal Society for his researches into the sur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube Roots Of Unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation :z^n = 1. Unless otherwise specified, the roots of unity may be taken to be complex numbers ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube Root
In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of , denoted \sqrt[3]8, is , because , while the other cube roots of are -1+i\sqrt 3 and -1-i\sqrt 3. The three cube roots of are :3i, \quad \frac-\fraci, \quad \text \quad -\frac-\fraci. In some contexts, particularly when the number whose cube root is to be taken is a real number, one of the cube roots (in this particular case the real one) is referred to as the ''principal cube root'', denoted with the radical sign \sqrt[3]. The cube root is the inverse function of the cube (algebra), cube function if considering only real numbers, but not if considering also complex numbers: although one has always \left(\sqrt[3]x\right)^3 =x, the cube of a nonzero number has more than one complex cube root and its ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Norm Form
In mathematics, a norm form is a homogeneous form in ''n'' variables constructed from the field norm of a field extension ''L''/''K'' of degree ''n''. That is, writing ''N'' for the norm mapping to ''K'', and selecting a basis ''e''1, ..., ''e''''n'' for ''L'' as a vector space over ''K'', the form is given by :''N''(''x''1''e''1 + ... + ''x''''n''''e''''n'') in variables ''x''1, ..., ''x''''n''. In number theory norm forms are studied as Diophantine equations, where they generalize, for example, the Pell equation.. For this application the field ''K'' is usually the rational number field, the field ''L'' is an algebraic number field, and the basis is taken of some order in the ring of integers ''O''''L'' of ''L''. See also *Trace form In mathematics, the field trace is a particular function defined with respect to a finite field extension ''L''/''K'', which is a ''K''-linear map from ''L'' onto ''K''. Definition Let ''K'' be a field and ''L'' a finite extension (and hence a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Function
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power. Examples of such functions are: * f(x) = 1/x * f(x) = \sqrt * f(x) = \frac Some algebraic functions, however, cannot be expressed by such finite expressions (this is the Abel–Ruffini theorem). This is the case, for example, for the Bring radical, which is the function implicitly defined by : f(x)^5+f(x)+x = 0. In more precise terms, an algebraic function of degree in one variable is a function y = f(x), that is continuous in its domain and satisfies a polynomial equation : a_n(x)y^n+a_(x)y^+\cdots+a_0(x)=0 where the coefficients are polynomial functions of , with integer coefficients. It can be shown that the same class of functions is obtained if algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the polynomial . That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number 1 + i is algebraic because it is a root of . All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as and , are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. Examples * All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer and a (non-zero) natural number , satisfies the above definition, because is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Numbers
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Difference Of Two Squares
In mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity :a^2-b^2 = (a+b)(a-b) in elementary algebra. Proof The proof of the factorization identity is straightforward. Starting from the left-hand side, apply the distributive law to get :(a+b)(a-b) = a^2+ba-ab-b^2 By the commutative law, the middle two terms cancel: :ba - ab = 0 leaving :(a+b)(a-b) = a^2-b^2 The resulting identity is one of the most commonly used in mathematics. Among many uses, it gives a simple proof of the AM–GM inequality in two variables. The proof holds in any commutative ring. Conversely, if this identity holds in a ring ''R'' for all pairs of elements ''a'' and ''b'', then ''R'' is commutative. To see this, apply the distributive law to the right-hand side of the equation and get :a^2 + ba - ab - b^2. For this to be equal to a^2 - b^2, we must have :ba - ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Root
In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'', which is denoted by \sqrt, where the symbol \sqrt is called the ''radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case 9. For nonnegative , the principal square root can also be written in exponent notation, as . Every positive number has two square roots: \sqrt, which is positive, and -\sqrt, which is negative. The two roots can be written more concisely using the ± sign as \plusmn\sqrt. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nth Root
In mathematics, a radicand, also known as an nth root, of a number ''x'' is a number ''r'' which, when raised to the power ''n'', yields ''x'': :r^n = x, where ''n'' is a positive integer, sometimes called the ''degree'' of the root. A root of degree 2 is called a ''square root'' and a root of degree 3, a ''cube root''. Roots of higher degree are referred by using ordinal numbers, as in ''fourth root'', ''twentieth root'', etc. The computation of an th root is a root extraction. For example, 3 is a square root of 9, since 3 = 9, and −3 is also a square root of 9, since (−3) = 9. Any non-zero number considered as a complex number has different complex th roots, including the real ones (at most two). The th root of 0 is zero for all positive integers , since . In particular, if is even and is a positive real number, one of its th roots is real and positive, one is negative, and the others (when ) are non-real complex numbers; if is even and is a negative real numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]