Raptor Codes
   HOME
*





Raptor Codes
In computer science, Raptor codes (''rapid tornado''; see Tornado codes) are the first known class of fountain codes with linear time encoding and decoding. They were invented by Amin Shokrollahi in 2000/2001 and were first published in 2004 as an extended abstract. Raptor codes are a significant theoretical and practical improvement over LT codes, which were the first practical class of fountain codes. Raptor codes, as with fountain codes in general, encode a given source block of data consisting of a number ''k'' of equal size source symbols into a potentially limitless sequence of encoding symbols such that reception of any ''k'' or more encoding symbols allows the source block to be recovered with some non-zero probability. The probability that the source block can be recovered increases with the number of encoding symbols received above ''k'' becoming very close to 1, once the number of received encoding symbols is only very slightly larger than ''k''. For example, with the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of ATSC Standards
Below are the published ATSC standards for ATSC digital television service, issued by the Advanced Television Systems Committee. *A/49: Ghost Canceling Reference Signal for NTSC (for adjacent-channel interference or co-channel interference with analog NTSC stations nearby) *A/52B: audio data compression (Dolby AC-3 and E-AC-3) *A/53E: "ATSC Digital Television Standard" (the primary document governing the standard) *A/55: "Program Guide for Digital Television" (now deprecated in favor of A/65 PSIP) *A/56: "System Information for Digital Television" (now deprecated in favor of A/65 PSIP) *A/57A: "Content Identification and Labeling for ATSC Transport" (for assigning a unique digital number to each episode of each TV show, to assist DVRs) *A/63: "Standard for Coding 25/50 Hz Video" (for use with PAL and SECAM-originated programming) *A/64A "Transmission Measurement and Compliance for Digital Television" *A/65C: "Program and System Information Protocol for Terrestrial Broadcast and C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fountain Codes
In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term ''fountain'' or ''rateless'' refers to the fact that these codes do not exhibit a fixed code rate. A fountain code is optimal if the original ''k'' source symbols can be recovered from any ''k'' successfully received encoding symbols (i.e., excluding those that were erased). Fountain codes are known that have efficient encoding and decoding algorithms and that allow the recovery of the original ''k'' source symbols from any ''k’'' of the encoding symbols with high probability, where ''k’'' is just slightly larger than ''k''. LT codes were the first practical realization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Erasure Code
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of ''k'' symbols into a longer message (code word) with ''n'' symbols such that the original message can be recovered from a subset of the ''n'' symbols. The fraction ''r'' = ''k''/''n'' is called the code rate. The fraction ''k’/k'', where ''k’'' denotes the number of symbols required for recovery, is called reception efficiency. Optimal erasure codes Optimal erasure codes have the property that any ''k'' out of the ''n'' code word symbols are sufficient to recover the original message (i.e., they have optimal reception efficiency). Optimal erasure codes are maximum distance separable codes (MDS codes). Parity check Parity check is the special case where ''n'' = ''k'' + 1. From a set of ''k'' values \_, a checksum is computed and appended to the ''k'' source values: :v_= - \sum_^k v_i. The set of ''k''& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dynamic Adaptive Streaming Over HTTP
Dynamic Adaptive Streaming over HTTP (DASH), also known as MPEG-DASH, is an adaptive bitrate streaming technique that enables high quality streaming of media content over the Internet delivered from conventional HTTP web servers. Similar to Apple's HTTP Live Streaming (HLS) solution, MPEG-DASH works by breaking the content into a sequence of small segments, which are served over HTTP. An early HTTP web server based streaming system called SProxy was developed and deployed in the Hewlett Packard Laboratories in 2006. It showed how to use HTTP range requests to break the content into small segments. SProxy shows the effectiveness of segment based streaming, gaining best Internet penetration due to the wide deployment of firewalls, and reducing the unnecessary traffic transmission if a user chooses to terminate the streaming session earlier before reaching the end. Each segment contains a short interval of playback time of content that is potentially many hours in duration, such as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855) although some special cases of the method—albeit presented without proof—were known to Chinese mathematicians as early as circa 179 AD. To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. (subtraction can be achieved by multiplying one row with -1 and adding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LT Code
In computer science, Luby transform codes (LT codes) are the first class of practical fountain codes that are near-optimal erasure correcting codes. They were invented by Michael Luby in 1998 and published in 2002. Like some other fountain codes, LT codes depend on sparse bipartite graphs to trade reception overhead for encoding and decoding speed. The distinguishing characteristic of LT codes is in employing a particularly simple algorithm based on the exclusive or operation (\oplus) to encode and decode the message.The ''exclusive or'' (XOR) operation, symbolized by ⊕, has the very useful property that ''A'' ⊕ ''A'' = 0, where ''A'' is an arbitrary string of bits. LT codes are ''rateless'' because the encoding algorithm can in principle produce an infinite number of message packets (i.e., the percentage of packets that must be received to decode the message can be arbitrarily small). They are ''erasure correcting codes'' because they can be used to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamming Code
In computer science and telecommunication, Hamming codes are a family of linear error-correcting codes. Hamming codes can detect one-bit and two-bit errors, or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data. In mathematical terms, Hamming codes are a class of binary linear code. For each integer there is a code-word with block length and message length . Hence the rate of Hamming codes is , which is the highest possib ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Low Density Parity Check Code
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length. LDPC codes are finding increasing use in applications requiring reliable and highly efficient information transfer over bandwidth-constrained or return-channel-constrained links in the presence of corrupting noise. Implementation of LDPC codes has lag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Gray Sequence
The reflected binary code (RBC), also known as reflected binary (RB) or Gray code after Frank Gray, is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). For example, the representation of the decimal value "1" in binary would normally be "" and "2" would be "". In Gray code, these values are represented as "" and "". That way, incrementing a value from 1 to 2 requires only one bit to change, instead of two. Gray codes are widely used to prevent spurious output from electromechanical switches and to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems. Motivation and name Many devices indicate position by closing and opening switches. If that device uses natural binary codes, positions 3 and 4 are next to each other but all three bits of the binary representation differ: : The problem with natural binary codes is that physical switches are not ideal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Erasure Code
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of ''k'' symbols into a longer message (code word) with ''n'' symbols such that the original message can be recovered from a subset of the ''n'' symbols. The fraction ''r'' = ''k''/''n'' is called the code rate. The fraction ''k’/k'', where ''k’'' denotes the number of symbols required for recovery, is called reception efficiency. Optimal erasure codes Optimal erasure codes have the property that any ''k'' out of the ''n'' code word symbols are sufficient to recover the original message (i.e., they have optimal reception efficiency). Optimal erasure codes are maximum distance separable codes (MDS codes). Parity check Parity check is the special case where ''n'' = ''k'' + 1. From a set of ''k'' values \_, a checksum is computed and appended to the ''k'' source values: :v_= - \sum_^k v_i. The set of ''k''& ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




ATSC 3
ATSC 3.0 is a major version of the ATSC standards for television broadcasting created by the Advanced Television Systems Committee (ATSC). The standards are designed to offer support for newer technologies, including HEVC for video channels of up to 2160p 4K resolution at 120 frames per second, wide color gamut, high dynamic range, Dolby AC-4 and MPEG-H 3D Audio, datacasting capabilities, and more robust mobile television support. The capabilities have also been foreseen as a way to enable finer public alerting and targeted advertising. The first major deployments of ATSC 3.0 occurred in South Korea in May 2017, in preparation for the 2018 Winter Olympics. In November 2017, the FCC approved the voluntary use of ATSC 3.0 (also referred to as Next Gen TV) for television broadcasting in the United States; there will not be a mandatory transition as there was from analog NTSC to ATSC, and full-power stations that convert must preserve the availability of their programming in thei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]