Random Oracle Model
   HOME
*





Random Oracle Model
In cryptography, a random oracle is an oracle (a theoretical black box) that responds to every ''unique query'' with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted. Stated differently, a random oracle is a mathematical function chosen uniformly at random, that is, a function mapping each possible query to a (fixed) random response from its output domain. Random oracles as a mathematical abstraction were first used in rigorous cryptographic proofs in the 1993 publication by Mihir Bellare and Phillip Rogaway (1993). They are typically used when the proof cannot be carried out using weaker assumptions on the cryptographic hash function. A system that is proven secure when every hash function is replaced by a random oracle is described as being secure in the random oracle model, as opposed to secure in the standard model of cryptography. Applications Random oracles are typical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Complexity Theory
In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm. A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying their computational complexity, i.e., the amount of resources needed to solve them, such as time and storage. Other measures of complexity are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IP (complexity)
In computational complexity theory, the class IP (interactive polynomial time) is the class of problems solvable by an interactive proof system. It is equal to the class PSPACE. The result was established in a series of papers: the first by Lund, Karloff, Fortnow, and Nisan showed that co-NP had multiple prover interactive proofs; and the second, by Shamir, employed their technique to establish that IP=PSPACE. The result is a famous example where the proof does not relativize. The concept of an interactive proof system was first introduced by Shafi Goldwasser, Silvio Micali, and Charles Rackoff in 1985. An interactive proof system consists of two machines, a prover, ''P'', which presents a proof that a given string ''n'' is a member of some language, and a verifier, ''V'', that checks that the presented proof is correct. The prover is assumed to be infinite in computation and storage, while the verifier is a probabilistic polynomial-time machine with access to a random bit stri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kolmogorov's Zero–one Law
In probability theory, Kolmogorov's zero–one law, named in honor of Andrey Nikolaevich Kolmogorov, specifies that a certain type of event, namely a ''tail event of independent σ-algebras'', will either almost surely happen or almost surely not happen; that is, the probability of such an event occurring is zero or one. Tail events are defined in terms of countably infinite families of σ-algebras. For illustrative purposes, we present here the special case in which each sigma algebra is generated by a random variable X_k for k\in\mathbb N. Let \mathcal be the sigma-algebra generated jointly by all of the X_k. Then, a tail event F \in \mathcal is an event which is probabilistically independent of each finite subset of these random variables. (Note: F belonging to \mathcal implies that membership in F is uniquely determined by the values of the X_k, but the latter condition is strictly weaker and does not suffice to prove the zero-one law.) For example, the event that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist. The presumed difficulty of this problem is important for the algorithms used in cryptography such as RSA public-key encryption and the RSA digital signature. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves, algebraic number theory, and quantum computing. In 2019, Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé and Paul Zimmermann factored a 240-digit (795-bit) number ( RSA-240) utilizing approximately 900 core-years of computing power. The researchers estimated that a 1024-bit R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pathological (mathematics)
In mathematics, when a mathematical phenomenon runs counter to some intuition, then the phenomenon is sometimes called pathological. On the other hand, if a phenomenon does not run counter to intuition, it is sometimes called well-behaved. These terms are sometimes useful in mathematical research and teaching, but there is no strict mathematical definition of pathological or well-behaved. In analysis A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions. In fact, using the Baire category theorem, one can show that continuous functions are generically nowhere differentiable. Such examples were deemed pathological when they were first discovered: To quote Henri Poincaré: Since Poincaré, nowhere differentiabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church–Turing Thesis
In computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term effectively calculable to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formalize the notion of computability: * In 1933, Kurt Gödel, with Jacques Herbrand, formalized the definition of the class of general recursive functions: the smallest class of functions (with arbitrarily many arguments) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinity
Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including l'Hôpital and Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or magnitude and, if so, how this could be done. At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes. For example, if a line is viewed as the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symposium On Theory Of Computing
The Annual ACM Symposium on Theory of Computing (STOC) is an academic conference in the field of theoretical computer science. STOC has been organized annually since 1969, typically in May or June; the conference is sponsored by the Association for Computing Machinery special interest group SIGACT. Acceptance rate of STOC, averaged from 1970 to 2012, is 31%, with the rate of 29% in 2012. As writes, STOC and its annual IEEE counterpart FOCS (the Symposium on Foundations of Computer Science) are considered the two top conferences in theoretical computer science, considered broadly: they “are forums for some of the best work throughout theory of computing that promote breadth among theory of computing researchers and help to keep the community together.” includes regular attendance at STOC and FOCS as one of several defining characteristics of theoretical computer scientists. Awards The Gödel Prize for outstanding papers in theoretical computer science is presented alternately ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CRYPTO
Crypto commonly refers to: * Cryptocurrency, a type of digital currency secured by cryptography and decentralization * Cryptography, the practice and study of hiding information Crypto or Krypto may also refer to: Cryptography * Cryptanalysis, the study of methods for obtaining the meaning of encrypted information * CRYPTO (conference), an annual cryptographical and cryptoanalytic conference * Crypto++, a free, open source library of cryptographic algorithms and schemes *'' Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age'', a book about cryptography by Steven Levy * Crypto AG, a Swiss manufacturer of encrypted communications products Finance * crypto.com, a cryptocurrency online News platform. Biology and medicine * ''Cryptococcus'' (fungus), a genus of fungus that can cause lung disease, meningitis, and other illnesses in humans and animals ** Cryptococcosis (also called cryptococcal disease), a disease caused by ''Cryptococcus'' * '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adi Shamir
Adi Shamir ( he, עדי שמיר; born July 6, 1952) is an Israeli cryptographer. He is a co-inventor of the Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest and Len Adleman), a co-inventor of the Feige–Fiat–Shamir identification scheme (along with Uriel Feige and Amos Fiat), one of the inventors of differential cryptanalysis and has made numerous contributions to the fields of cryptography and computer science. Education Born in Tel Aviv, Shamir received a Bachelor of Science (BSc) degree in mathematics from Tel Aviv University in 1973 and obtained his Master of Science (MSc) and Doctor of Philosophy (PhD) degrees in Computer Science from the Weizmann Institute in 1975 and 1977 respectively. Career and research After a year as a postdoctoral researcher at the University of Warwick, he did research at Massachusetts Institute of Technology (MIT) from 1977 to 1980 before returning to be a member of the faculty of Mathematics and Computer Science at the Weizma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amos Fiat
Amos Fiat (born December 1, 1956) is an Israeli computer scientist, a professor of computer science at Tel Aviv University. He is known for his work in cryptography, online algorithms, and algorithmic game theory. Biography Fiat earned his Ph.D. in 1987 from the Weizmann Institute of Science under the supervision of Adi Shamir. After postdoctoral studies with Richard Karp and Manuel Blum at the University of California, Berkeley, he returned to Israel, taking a faculty position at Tel Aviv University. Research Many of Fiat's most highly cited publications concern cryptography, including his work with Adi Shamir on digital signatures (leading to the Fiat–Shamir heuristic for turning interactive identification protocols into signature schemes) and his work with David Chaum and Moni Naor on electronic money, used as the basis for the ecash system. With Shamir and Uriel Feige in 1988, Fiat invented the Feige–Fiat–Shamir identification scheme, a method for using public- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]