RTOS
   HOME





RTOS
A real-time operating system (RTOS) is an operating system (OS) for real-time computing applications that processes data and events that have critically defined time constraints. A RTOS is distinct from a time-sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in multitasking or multiprogramming environments. All operations must verifiably complete within given time and resource constraints or else fail safe. Real-time operating systems are event-driven and preemptive, meaning the OS can monitor the relevant priority of competing tasks, and make changes to the task priority. Characteristics A key characteristic of an RTOS is the level of its consistency concerning the amount of time it takes to accept and complete an application's task; the variability is "jitter". A "hard" real-time operating system (hard RTOS) has less jitter than a "soft" real-time operating system (soft RTOS); a l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real-time Computing
Real-time computing (RTC) is the computer science term for Computer hardware, hardware and software systems subject to a "real-time constraint", for example from Event (synchronization primitive), event to Event (computing), system response. Real-time programs must guarantee response within specified time constraints, often referred to as "deadlines".Mordechai Ben-Ari, Ben-Ari, Mordechai; "Principles of Concurrent and Distributed Programming", ch. 16, Prentice Hall, 1990, , p. 164 The term "real-time" is also used in Computer simulation, simulation to mean that the simulation's clock runs at the same speed as a real clock. Real-time responses are often understood to be in the order of milliseconds, and sometimes microseconds. A system not specified as operating in real time cannot usually ''guarantee'' a response within any timeframe, although ''typical'' or ''expected'' response times may be given. Real-time processing ''fails'' if not completed within a specified deadline rela ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fixed-priority Pre-emptive Scheduling
Fixed-priority preemptive scheduling is a scheduling system commonly used in real-time systems. With fixed priority preemptive scheduling, the scheduler ensures that at any given time, the processor executes the highest priority task of all those tasks that are currently ready to execute. The preemptive scheduler has a clock interrupt task that can provide the scheduler with options to switch after the task has had a given period to execute—the time slice. This scheduling system has the advantage of making sure no task hogs the processor for any time longer than the time slice. However, this scheduling scheme is vulnerable to process or thread lockout: since priority is given to higher-priority tasks, the lower-priority tasks could wait an indefinite amount of time. One common method of arbitrating this situation is aging, which gradually increments the priority of waiting processes and threads, ensuring that they will all eventually execute. Most real-time operating system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interrupt Latency
In computing, interrupt latency refers to the delay between the start of an Interrupt Request (IRQ) and the start of the respective Interrupt Service Routine (ISR). For many operating systems, devices are serviced as soon as the device's interrupt handler is executed. Interrupt latency may be affected by microprocessor design, interrupt controllers, interrupt masking, and the operating system's (OS) interrupt handling methods. Background There is usually a trade-off between interrupt latency, throughput, and processor utilization. Many of the techniques of CPU and OS design that improve interrupt latency will decrease throughput and increase processor utilization. Techniques that increase throughput may increase interrupt latency and increase processor utilization. Lastly, trying to reduce processor utilization may increase interrupt latency and decrease throughput. Minimum interrupt latency is largely determined by the interrupt controller circuit and its configuration. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earliest Deadline First Scheduling
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline. This process is the next to be scheduled for execution. EDF is an ''optimal'' scheduling algorithm on preemptive uniprocessors, in the following sense: if a collection of independent ''jobs,'' each characterized by an arrival time, an execution requirement and a deadline, can be scheduled (by any algorithm) in a way that ensures all the jobs complete by their deadline, the EDF will schedule this collection of jobs so they all complete by their deadline. With scheduling periodic processes that have deadlines equal to their periods, EDF has a utilization bound of 100%. Thus, the schedulability test for EDF is: :U = \sum_^ \frac \leq 1, where the \left\ are the worst-case com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rate-monotonic Scheduling
In computer science, rate-monotonic scheduling (RMS) is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority. These operating systems are generally preemptive and have deterministic guarantees with regard to response times. Rate monotonic analysis is used in conjunction with those systems to provide scheduling guarantees for a particular application. Introduction A simple version of rate-monotonic analysis assumes that threads have the following properties: *No resource sharing (processes do not share resources, ''e.g.'' a hardware resource, a queue, or any kind of semaphore blocking or non-blocking ( busy-waits)) *Deterministic deadlines are exactly equal to periods *Static priorities (the task with the highest static priority that is runnable immediately preempts all other ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Multitasking
In computing, multitasking is the concurrent computing, concurrent execution of multiple tasks (also known as Process (computing), processes) over a certain period of time. New tasks can interrupt already started ones before they finish, instead of waiting for them to end. As a result, a computer executes segments of multiple tasks in an interleaved manner, while the tasks share common processing resources such as central processing units (CPUs) and main memory. Multitasking automatically interrupts the running program, saving its state (partial results, memory contents and computer register contents) and loading the saved state of another program and transferring control to it. This "context switch" may be initiated at fixed time intervals (pre-emptive multitasking), or the running program may be coded to signal to the supervisory software when it can be interrupted (cooperative multitasking). Multitasking does not require Parallel computing, parallel execution of multiple task ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CPU Design
Processor design is a subfield of computer science and computer engineering (fabrication) that deals with creating a processor (computing), processor, a key component of computer hardware. The design process involves choosing an instruction set and a certain execution paradigm (e.g. Very long instruction word, VLIW or Reduced instruction set computing, RISC) and results in a microarchitecture, which might be described in e.g. VHDL or Verilog. For microprocessor design, this description is then manufactured employing some of the various semiconductor device fabrication processes, resulting in a Die (integrated circuit), die which is bonded onto a chip carrier. This chip carrier is then soldered onto, or inserted into a CPU socket, socket on, a printed circuit board (PCB). The mode of operation of any processor is the execution of lists of instructions. Instructions typically include those to compute or manipulate data values using Processor register, registers, change or retrieve va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Processing Unit
A central processing unit (CPU), also called a central processor, main processor, or just processor, is the primary Processor (computing), processor in a given computer. Its electronic circuitry executes Instruction (computing), instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, CPU design, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic operation, arithmetic and Bitwise operation, logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the #Fetch, fetching (from memory), #Decode, decoding and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multi-core Processor
A multi-core processor (MCP) is a microprocessor on a single integrated circuit (IC) with two or more separate central processing units (CPUs), called ''cores'' to emphasize their multiplicity (for example, ''dual-core'' or ''quad-core''). Each core reads and executes Instruction set, program instructions, specifically ordinary Instruction set, CPU instructions (such as add, move data, and branch). However, the MCP can run instructions on separate cores at the same time, increasing overall speed for programs that support Multithreading (computer architecture), multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single IC Die (integrated circuit), die, known as a ''chip multiprocessor'' (CMP), or onto multiple dies in a single Chip carrier, chip package. As of 2024, the microprocessors used in almost all new personal computers are multi-core. A multi-core processor implements multiprocessing in a single physical package. Des ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Operating System
An operating system (OS) is system software that manages computer hardware and software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for efficient use of the system and may also include accounting software for cost allocation of Scheduling (computing), processor time, mass storage, peripherals, and other resources. For hardware functions such as input and output and memory allocation, the operating system acts as an intermediary between programs and the computer hardware, although the application code is usually executed directly by the hardware and frequently makes system calls to an OS function or is interrupted by it. Operating systems are found on many devices that contain a computerfrom cellular phones and video game consoles to web servers and supercomputers. , Android (operating system), Android is the most popular operating system with a 46% market share, followed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resource Starvation
In computer science, resource starvation is a problem encountered in concurrent computing where a process is perpetually denied necessary resources ''Resource'' refers to all the materials available in our environment which are Technology, technologically accessible, Economics, economically feasible and Culture, culturally Sustainability, sustainable and help us to satisfy our needs and want ... to process its work. Starvation may be caused by errors in a scheduling or mutual exclusion algorithm, but can also be caused by resource leaks, and can be intentionally caused via a denial-of-service attack such as a fork bomb. When starvation is impossible in a concurrent algorithm, the algorithm is called starvation-free, lockout-freed or said to have finite bypass. This property is an instance of liveness, and is one of the two requirements for any mutual exclusion algorithm; the other being correctness. The name "finite bypass" means that any process (concurrent part) of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]