RDRAND
   HOME





RDRAND
RDRAND (for "read random") is an instruction for returning random numbers from an Intel on-chip hardware random number generator which has been seeded by an on-chip entropy source. It is also known as Intel Secure Key Technology, codenamed Bull Mountain. Intel introduced the feature around 2012, and AMD added support for the instruction in June 2015. (RDRAND is available in Ivy Bridge processors and is part of the Intel 64 and IA-32 instruction set architectures.) The random number generator is compliant with security and cryptographic standards such as NIST SP 800-90A, FIPS 140-2, and ANSI X9.82. Intel also requested Cryptography Research Inc. to review the random number generator in 2012, which resulted in the paper ''Analysis of Intel's Ivy Bridge Digital Random Number Generator''. RDSEED is similar to RDRAND and provides lower-level access to the entropy-generating hardware. The RDSEED generator and processor instruction rdseed are available with Intel Broadwell CPUs a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Number Generator
Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance. This means that the particular outcome sequence will contain some patterns detectable in hindsight but impossible to foresee. True random number generators can be '' hardware random-number generators'' (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model. This would be in contrast to so-called "random number generations" done by ''pseudorandom number generators'' (PRNGs), which generate numbers that only look random but are in fact predetermined—these generations can be reproduced simply by knowing the state of the PRNG. Various applications of randomness have led to the development of different methods for generating random data. Some of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ivy Bridge (microarchitecture)
Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors ( Core i7, i5, i3). Ivy Bridge is a die shrink to 22 nm process based on FinFET ("3D") Tri-Gate transistors, from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model. The name is also applied more broadly to the Xeon and Core i7 Extreme Ivy Bridge-E series of processors released in 2013. Ivy Bridge processors are backward compatible with the Sandy Bridge platform, but such systems might require a firmware update (vendor specific). In 2011, Intel released the 7-series Panther Point chipsets with integrated USB 3.0 and SATA 3.0 to complement Ivy Bridge. Volume production of Ivy Bridge chips began in the third quarter of 2011. Quad-core and dual-core-mobile models launched on April 29, 2012 and May 31, 2012 respectively. Core i3 desktop processors, as well as the first 22  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel 64
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit extension of the x86 instruction set. It was announced in 1999 and first available in the AMD Opteron family in 2003. It introduces two new operating modes: 64-bit mode and compatibility mode, along with a new four-level paging mechanism. In 64-bit mode, x86-64 supports significantly larger amounts of virtual memory and physical memory compared to its 32-bit predecessors, allowing programs to utilize more memory for data storage. The architecture expands the number of general-purpose registers from 8 to 16, all fully general-purpose, and extends their width to 64 bits. Floating-point arithmetic is supported through mandatory SSE2 instructions in 64-bit mode. While the older x87 FPU and MMX registers are still available, they are generally superseded by a set of sixteen 128-bit vector registers (XMM registers). Each of these vector registers can store one or two double-precision floating-point numbers, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Entropy Source
In computing, a hardware random number generator (HRNG), true random number generator (TRNG), non-deterministic random bit generator (NRBG), or physical random number generator is a device that random number generation, generates random numbers from a physical process capable of producing Entropy (computing), entropy, unlike a pseudorandom number generator (PRNG) that utilizes a deterministic algorithm and non-physical nondeterministic random bit generators that do not include hardware dedicated to generation of entropy. Many natural phenomena generate low-level, statistically random "noise (signal processing), noise" signals, including thermal noise, thermal and shot noise, shot noise, jitter and metastability of electronic circuits, Brownian motion, and atmospheric noise. Researchers also used the photoelectric effect, involving a beam splitter, other quantum phenomena, and even the nuclear decay (due to practical considerations the latter, as well as the atmospheric noise, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CPUID
In the x86 architecture, the CPUID instruction (identified by a CPUID opcode) is a processor supplementary instruction (its name derived from " CPU Identification") allowing software to discover details of the processor. It was introduced by Intel in 1993 with the launch of the Pentium and SL-enhanced 486 processors. A program can use the CPUID to determine processor type and whether features such as MMX/ SSE are implemented. History Prior to the general availability of the CPUID instruction, programmers would write esoteric machine code which exploited minor differences in CPU behavior in order to determine the processor make and model. With the introduction of the 80386 processor, EDX on reset indicated the revision but this was only readable after reset and there was no standard way for applications to read the value. Outside the x86 family, developers are mostly still required to use esoteric processes (involving instruction timing or CPU fault triggers) to determine th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hardware Random Number Generator
In computing, a hardware random number generator (HRNG), true random number generator (TRNG), non-deterministic random bit generator (NRBG), or physical random number generator is a device that generates random numbers from a physical process capable of producing entropy, unlike a pseudorandom number generator (PRNG) that utilizes a deterministic algorithm and non-physical nondeterministic random bit generators that do not include hardware dedicated to generation of entropy. Many natural phenomena generate low-level, statistically random "noise" signals, including thermal and shot noise, jitter and metastability of electronic circuits, Brownian motion, and atmospheric noise. Researchers also used the photoelectric effect, involving a beam splitter, other quantum phenomena, and even the nuclear decay (due to practical considerations the latter, as well as the atmospheric noise, is not viable except for fairly restricted applications or online distribution services). Wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mersenne Twister
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by and . Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was created specifically to address most of the flaws found in earlier PRNGs. The most commonly used version of the Mersenne Twister algorithm is based on the Mersenne prime 2^-1. The standard implementation of that, MT19937, uses a 32-bit word length. There is another implementation (with five variants) that uses a 64-bit word length, MT19937-64; it generates a different sequence. ''k''-distribution A pseudorandom sequence x_i of ''w''-bit integers of period ''P'' is said to be ''k-distributed'' to ''v''-bit accuracy if the following holds. : Let trunc''v''(''x'') denote the number formed by the leading ''v'' bits of ''x'', and consider ''P'' of the ''kv''-bit vectors :: (\operatorname_v(x_i), \operatorname_v(x_), \, \ldots, \operatorname_v(x_)) \quad (0\leq i. The Mersenn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Silvermont
Silvermont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. Silvermont forms the basis for a total of four SoC families: * ''Merrifield'' and ''Moorefield'' consumer SoCs intended for smartphones * ''Bay Trail'' consumer SoCs aimed at tablets, hybrid devices, netbooks, nettops, and embedded/automotive systems * ''Avoton'' SoCs for micro-servers and storage devices * ''Rangeley'' SoCs targeting network and communication infrastructure. Silvermont is the successor of the Bonnell, using a newer 22 nm process (previously introduced with Ivy Bridge) and a new microarchitecture, replacing Hyper Threading with out-of-order execution. Silvermont was announced to news media on May 6, 2013, at Intel's headquarters at Santa Clara, California. Intel had repeatedly said the first Bay Trail devices would be available during the Holiday 2013 timeframe, while leaked slides showed that the release window f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kaby Lake
Kaby Lake is Intel's codename for its seventh generation Core microprocessor family announced on August 30, 2016. Like the preceding Skylake, Kaby Lake is produced using a 14 nanometer manufacturing process technology. Breaking with Intel's previous " tick–tock" manufacturing and design model, Kaby Lake represents the optimized step of the newer process–architecture–optimization model. Kaby Lake began shipping to manufacturers and OEMs in the second quarter of 2016, with its desktop chips officially launched in January 2017. In August 2017, Intel announced Kaby Lake Refresh ( Kaby Lake R) marketed as the 8th generation mobile CPUs, breaking the long cycle where architectures matched the corresponding generations of CPUs and meanwhile also supporting Windows 11. Skylake was anticipated to be succeeded by the 10 nanometer Cannon Lake, but it was announced in July 2015 that Cannon Lake had been delayed until the second half of 2017. In the meantime, Intel released a fou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skylake (microarchitecture)
Skylake is Intel's codename for its sixth generation Core microprocessor family that was launched on August 5, 2015, succeeding the Broadwell microarchitecture. Skylake is a microarchitecture redesign using the same 14 nm manufacturing process technology as its predecessor, serving as a tock in Intel's tick–tock manufacturing and design model. According to Intel, the redesign brings greater CPU and GPU performance and reduced power consumption. Skylake CPUs share their microarchitecture with Kaby Lake, Coffee Lake, Whiskey Lake, and Comet Lake CPUs. Skylake is the last Intel platform on which Windows earlier than Windows 10 are officially supported by Microsoft, although enthusiast-created modifications are available that disabled the Windows Update check and allowed Windows 8.1 and earlier to continue to receive Windows Updates on this and later platforms. Some of the processors based on the Skylake microarchitecture are marketed as sixth-generation Core. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Broadwell (microarchitecture)
Broadwell (previously Rockwell) is the fifth generation of the Intel Core processor. It is Intel's codename for the 14 nanometer die shrink of its Haswell microarchitecture. It is a "tick" in Intel's tick–tock principle as the next step in semiconductor fabrication. Like some of the previous tick-tock iterations, Broadwell did not completely replace the full range of CPUs from the previous microarchitecture ( Haswell), as there were no low-end desktop CPUs based on Broadwell. Some of the processors based on the Broadwell microarchitecture are marketed as "5th-generation Core" i3, i5 and i7 processors. This moniker is however not used for marketing of the Broadwell-based Celeron, Pentium or Xeon chips. This microarchitecture also introduced the Core M processor branding. Broadwell's H and C variants are used in conjunction with Intel 9 Series chipsets ( Z97, H97 and HM97), in addition to retaining backward compatibility with some of the Intel 8 Series chipse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thread (computing)
In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process. The multiple threads of a given process may be executed concurrently (via multithreading capabilities), sharing resources such as memory, while different processes do not share these resources. In particular, the threads of a process share its executable code and the values of its dynamically allocated variables and non- thread-local global variables at any given time. The implementation of threads and processes differs between operating systems. History Threads made an early appearance under the name of "tasks" in IBM's batch processing operating system, OS/360, in 1967. It provided users with three available configurations of the OS/360 control system, of which Multiprogramming with a Variable Number of Tasks (MVT) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]