RDRAND
   HOME
*





RDRAND
RDRAND (for "read random"; known as Intel Secure Key Technology, previously known as Bull Mountain) is an instruction for returning random numbers from an Intel on-chip hardware random number generator which has been seeded by an on-chip entropy source. Intel introduced the feature around 2012, and AMD added support for the instruction in June 2015. (RDRAND is available in Ivy Bridge processors and is part of the Intel 64 and IA-32 instruction set architectures.) The random number generator is compliant with security and cryptographic standards such as NIST SP 800-90A, FIPS 140-2, and ANSI X9.82. Intel also requested Cryptography Research Inc. to review the random number generator in 2012, which resulted in the paper ''Analysis of Intel's Ivy Bridge Digital Random Number Generator''. RDSEED is similar to RDRAND and provides lower-level access to the entropy-generating hardware. The RDSEED generator and processor instruction rdseed are available with Intel Broadwell CPUs and A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ivy Bridge (microarchitecture)
Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors (Core i7, i5, i3). Ivy Bridge is a die shrink to 22 nm process based on FinFET ("3D") Tri-Gate transistors, from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model. The name is also applied more broadly to the Xeon and Core i7 Ivy Bridge-E series of processors released in 2013. Ivy Bridge processors are backward compatible with the Sandy Bridge platform, but such systems might require a firmware update (vendor specific). In 2011, Intel released the 7-series Panther Point chipsets with integrated USB 3.0 and SATA 3.0 to complement Ivy Bridge. Volume production of Ivy Bridge chips began in the third quarter of 2011. Quad-core and dual-core-mobile models launched on April 29, 2012 and May 31, 2012 respectively. Core i3 desktop processors, as well as the first 22 nm Pentium, wer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Number Generator
Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be '' hardware random-number generators'' (HRNGS) that generate random numbers, wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model. This would be in contrast to so-called "random number generations" done by ''pseudorandom number generators'' (PRNGs) that generate numbers that only look random but are in fact pre-determined—these generations can be reproduced simply by knowing the state of the PRNG. Various applications of randomness have led to the development of several different meth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hardware Random Number Generator
In computing, a hardware random number generator (HRNG) or true random number generator (TRNG) is a device that generates random numbers from a physical process, rather than by means of an algorithm. Such devices are often based on microscopic phenomena that generate low-level, statistically random "noise" signals, such as thermal noise, the photoelectric effect, involving a beam splitter, and other quantum phenomena. These stochastic processes are, in theory, completely unpredictable for as long as an equation governing such phenomena is unknown or uncomputable. This is in contrast to the paradigm of pseudo-random number generation commonly implemented in computer programs. A hardware random number generator typically consists of a transducer to convert some aspect of the physical phenomena to an electrical signal, an amplifier and other electronic circuitry to increase the amplitude of the random fluctuations to a measurable level, and some type of analog-to-digital conv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skylake (microarchitecture)
Skylake is the codename used by Intel for a processor microarchitecture that was launched in August 2015 succeeding the Broadwell microarchitecture. Skylake is a microarchitecture redesign using the same 14 nm manufacturing process technology as its predecessor, serving as a tock in Intel's tick–tock manufacturing and design model. According to Intel, the redesign brings greater CPU and GPU performance and reduced power consumption. Skylake CPUs share their microarchitecture with Kaby Lake, Coffee Lake, Cannon Lake, Whiskey Lake, and Comet Lake CPUs. Skylake is the last Intel platform on which Windows earlier than Windows 10 will be officially supported by Microsoft, although enthusiast-created modifications exist that allow Windows 8.1 and earlier to continue to receive Windows Updates on later platforms. Some of the processors based on the Skylake microarchitecture are marketed as 6th-generation Core. Intel officially declared end of life and discontinued Sk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CPUID
In the x86 architecture, the CPUID instruction (identified by a CPUID opcode) is a processor supplementary instruction (its name derived from CPU IDentification) allowing software to discover details of the processor. It was introduced by Intel in 1993 with the launch of the Pentium and SL-enhanced 486 processors. A program can use the CPUID to determine processor type and whether features such as MMX/ SSE are implemented. History Prior to the general availability of the CPUID instruction, programmers would write esoteric machine code which exploited minor differences in CPU behavior in order to determine the processor make and model. With the introduction of the 80386 processor, EDX on reset indicated the revision but this was only readable after reset and there was no standard way for applications to read the value. Outside the x86 family, developers are mostly still required to use esoteric processes (involving instruction timing or CPU fault triggers) to determine the var ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel 64
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit version of the x86 instruction set, first released in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode. With 64-bit mode and the new paging mode, it supports vastly larger amounts of virtual memory and physical memory than was possible on its 32-bit predecessors, allowing programs to store larger amounts of data in memory. x86-64 also expands general-purpose registers to 64-bit, and expands the number of them from 8 (some of which had limited or fixed functionality, e.g. for stack management) to 16 (fully general), and provides numerous other enhancements. Floating-point arithmetic is supported via mandatory SSE2-like instructions, and x87/ MMX style registers are generally not used (but still available even in 64-bit mode); instead, a set of 16 vector registers, 128 bits each, is used. (Each register can store one or two double-precisi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mersenne Twister
The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by and . Its name derives from the fact that its period length is chosen to be a Mersenne prime. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs. The most commonly used version of the Mersenne Twister algorithm is based on the Mersenne prime 2^-1. The standard implementation of that, MT19937, uses a 32-bit word length. There is another implementation (with five variants) that uses a 64-bit word length, MT19937-64; it generates a different sequence. Application Software The Mersenne Twister is used as default PRNG by the following software: * Programming languages: Dyalog APL, IDL, R, Ruby, Free Pascal, PHP, Python (also available in NumPy, however the default was changed to PCG64 instead as of version 1.17),, CMU Common Lisp, Embeddable Common Lisp, Steel Bank Common Lisp, Julia (up to Julia 1.6 LTS, still available in lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Silvermont
Silvermont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. Silvermont forms the basis for a total of four SoC families: * ''Merrifield'' and ''Moorefield'' consumer SoCs intended for smartphones * ''Bay Trail'' consumer SoCs aimed at tablets, hybrid devices, netbooks, nettops, and embedded/automotive systems * ''Avoton'' SoCs for micro-servers and storage devices * ''Rangeley'' SoCs targeting network and communication infrastructure. Silvermont is the successor of the Bonnell, using a newer 22 nm process (previously introduced with Ivy Bridge) and a new microarchitecture, replacing Hyper Threading with out-of-order execution. Silvermont was announced to news media on May 6, 2013, at Intel's headquarters at Santa Clara, California. Intel had repeatedly said the first Bay Trail devices would be available during the Holiday 2013 timeframe, while leaked slides showed that the release window fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kaby Lake
Kaby Lake is Intel's codename for its seventh generation Core microprocessor family announced on August 30, 2016. Like the preceding Skylake, Kaby Lake is produced using a 14 nanometer manufacturing process technology. Breaking with Intel's previous " tick–tock" manufacturing and design model, Kaby Lake represents the optimized step of the newer process–architecture–optimization model. Kaby Lake began shipping to manufacturers and OEMs in the second quarter of 2016, and mobile chips have started shipping while Kaby Lake (desktop) chips were officially launched in January 2017. In August 2017, Intel announced Kaby Lake Refresh ( Kaby Lake R) marketed as the 8th generation mobile CPUs, breaking the long cycle where architectures matched the corresponding generations of CPUs. Skylake was anticipated to be succeeded by the 10 nanometer Cannon Lake, but it was announced in July 2015 that Cannon Lake had been delayed until the second half of 2017. In the meantime, Intel re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Broadwell (microarchitecture)
Broadwell is the fifth generation of the Intel Core Processor. It is Intel's codename for the 14 nanometer die shrink of its Haswell microarchitecture. It is a "tick" in Intel's tick–tock principle as the next step in semiconductor fabrication. Like some of the previous tick-tock iterations, Broadwell did not completely replace the full range of CPUs from the previous microarchitecture ( Haswell), as there were no low-end desktop CPUs based on Broadwell. Some of the processors based on the Broadwell microarchitecture are marketed as "5th-generation Core" i3, i5 and i7 processors. This moniker is however not used for marketing of the Broadwell-based Celeron, Pentium or Xeon chips. This microarchitecture also introduced the Core M processor branding. Broadwell is the last Intel platform on which Windows 7 is supported by either Intel or Microsoft; however, third-party hardware vendors have offered limited Windows 7 support on more recent platforms. Broadwell's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Software PRNG
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by an initial value, called the PRNG's ''seed'' (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, ''pseudorandom number generators'' are important in practice for their speed in number generation and their reproducibility. PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable from earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed. Good statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Xorshift
Xorshift random number generators, also called shift-register generators, are a class of pseudorandom number generators that were invented by George Marsaglia. They are a subset of linear-feedback shift registers (LFSRs) which allow a particularly efficient implementation in software without the excessive use of sparse polynomials. They generate the next number in their sequence by repeatedly taking the exclusive or of a number with a bit-shifted version of itself. This makes execution extremely efficient on modern computer architectures, but it does not benefit efficiency in a hardware implementation. Like all LFSRs, the parameters have to be chosen very carefully in order to achieve a long period. For execution in software, xorshift generators are among the fastest non- cryptographically-secure random number generators, requiring very small code and state. However, they do not pass every statistical test without further refinement. This weakness is amended by combining them with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]