RC5
   HOME





RC5
In cryptography, RC5 is a symmetric-key block cipher notable for its simplicity. Designed by Ronald Rivest in 1994, ''RC'' stands for "Rivest Cipher", or alternatively, "Ron's Code" (compare RC2 and RC4). The Advanced Encryption Standard (AES) candidate RC6 was based on RC5. Description Unlike many schemes, RC5 has a variable block size (32, 64 or 128 bits), key size (0 to 2040 bits), and number of rounds (0 to 255). The original suggested choice of parameters were a block size of 64 bits, a 128-bit key, and 12 rounds. A key feature of RC5 is the use of data-dependent rotations; one of the goals of RC5 was to prompt the study and evaluation of such operations as a cryptographic primitive. RC5 also consists of a number of modular additions and eXclusive OR (XOR)s. The general structure of the algorithm is a Feistel-like network, similar to RC2. The encryption and decryption routines can be specified in a few lines of code. The key schedule, however, is more complex, expandi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Block Cipher
In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called ''blocks''. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key. A multitude of modes of operation have been designed to allow their repeated use in a secure way to achieve the security goals of confidentiality and authenticity. However, block ciphers may also feature as building blocks in other cryptographic protocols, such as universal hash functions and pseudorandom number generators. Definition A block cipher consists of two paired algorithms, one for encryption, , and the other for decryption, . Both algorithms accept two inputs: an input ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RSA Security
RSA Security LLC, formerly RSA Security, Inc. and trade name RSA, is an American computer security, computer and network security company with a focus on encryption and decryption standards. RSA was named after the initials of its co-founders, Ron Rivest, Adi Shamir and Leonard Adleman, after whom the RSA (algorithm), RSA public key cryptography algorithm was also named. Among its products is the SecurID authentication token. The BSAFE cryptography libraries were also initially owned by RSA. RSA is known for incorporating backdoors developed by the National Security Agency, NSA in its products. It also organizes the annual RSA Conference, an information security conference. Founded as an independent company in 1982, RSA Security was acquired by EMC Corporation in 2006 for US$2.1 billion and operated as a division within EMC. When EMC was acquired by Dell Technologies in 2016, RSA became part of the Dell Technologies family of brands. On 10 March 2020, Dell Technologies announced ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ron Rivest
Ronald Linn Rivest (; born May 6, 1947) is an American cryptographer and computer scientist whose work has spanned the fields of algorithms and combinatorics, cryptography, machine learning, and election integrity. He is an Institute Professor at the Massachusetts Institute of Technology (MIT), and a member of MIT's Department of Electrical Engineering and Computer Science and its Computer Science and Artificial Intelligence Laboratory. Along with Adi Shamir and Len Adleman, Rivest is one of the inventors of the RSA algorithm. He is also the inventor of the symmetric key encryption algorithms RC2, RC4, and RC5, and co-inventor of RC6. (''RC'' stands for "Rivest Cipher".) He also devised the MD2, MD4, MD5 and MD6 cryptographic hash functions. Education Rivest earned a bachelor's degree in mathematics from Yale University in 1969, and a Ph.D. degree in computer science from Stanford University in 1974 for research supervised by Robert W. Floyd. Career At MIT, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nothing Up My Sleeve Number
In cryptography, nothing-up-my-sleeve numbers are any numbers which, by their construction, are above suspicion of hidden properties. They are used in creating cryptographic functions such as hashes and ciphers. These algorithms often need randomized constants for mixing or initialization purposes. The cryptographer may wish to pick these values in a way that demonstrates the constants were not selected for a nefarious purpose, for example, to create a backdoor to the algorithm. These fears can be allayed by using numbers created in a way that leaves little room for adjustment. An example would be the use of initial digits from the number as the constants. Using digits of millions of places after the decimal point would not be considered trustworthy because the algorithm designer might have selected that starting point because it created a secret weakness the designer could later exploit—though even with natural-seeming selections, enough entropy exists in the possible choic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Red Pike (cipher)
Red Pike is a classified United Kingdom government encryption algorithm, proposed for use by the National Health Service by GCHQ, but designed for a "broad range of applications in the British government. Little is publicly known about Red Pike, except that it is a block cipher with a 64-bit block size and 64-bit key length. According to the academic study of the cipher cited below and quoted in a paper by Ross Anderson and Markus Kuhn, it "uses the same basic operations as RC5" (add, XOR, and left shift) and "has no look-up tables, virtually no key schedule and requires only five lines of code"; "the influence of each key bit quickly cascades" and "each encryption involves of the order of 100 operations". 64 bits of key entropy are not considered secure anymore. Red Pike is available to approved British government contractors in software form, for use in confidential (not secret) government communication systems. GCHQ also designed the Rambutan cryptosystem for the same segment ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Akelarre (cipher)
Akelarre is a block cipher proposed in 1996, combining the basic design of IDEA (cipher), IDEA with ideas from RC5. It was shown to be susceptible to a ciphertext-only attack in 1997. Akelarre is a 128-bit block cipher with a variable key-length which must be some multiple of 64 bits. The number of rounds is variable, but four are suggested. The round function of Akelarre is similar to IDEA in structure. After the successful cryptanalysis of Akelarre, its designers responded with an updated variant called Ake98. This cipher differs from the original Akelarre in the new ''AR-box'' (addition–rotation box), the swapping of words at the end of a round, and the addition of subkeys at the beginning of each round. In 2004, Jorge Nakahara, Jr. and Daniel Santana de Freitas found large classes of weak keys for Ake98. These weak keys allow a cryptanalysis faster than exhaustive search using only 71 known plaintexts, for up to 11.5 rounds of Ake98. References

* * * * * {{Cry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




RC4 (cipher)
In cryptography, RC4 (Rivest Cipher 4, also known as ARC4 or ARCFOUR, meaning Alleged RC4, see below) is a stream cipher. While it is remarkable for its simplicity and speed in software, multiple vulnerabilities have been discovered in RC4, rendering it insecure. It is especially vulnerable when the beginning of the output keystream is not discarded, or when nonrandom or related keys are used. Particularly problematic uses of RC4 have led to very insecure protocols such as WEP. , there is speculation that some state cryptologic agencies may possess the capability to break RC4 when used in the TLS protocol. IETF has published RFC 7465 to prohibit the use of RC4 in TLS; Mozilla and Microsoft have issued similar recommendations. A number of attempts have been made to strengthen RC4, notably Spritz, RC4A, VMPC, and RC4+. History RC4 was designed by Ron Rivest of RSA Security in 1987. While it is officially termed "Rivest Cipher 4", the RC acronym is alternatively understood to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgium, Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the Advanced Encryption Standard process, AES selection process. Rijndael is a family of ciphers with different key size, key and Block size (cryptography), block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the Federal government of the United States, U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Block Size (cryptography)
In modern cryptography, symmetric key ciphers are generally divided into stream ciphers and block ciphers. Block ciphers operate on a fixed length string of bits. The length of this bit string is the block size. Both the input ( plaintext) and output (ciphertext) are the same length; the output cannot be shorter than the input this follows logically from the pigeonhole principle and the fact that the cipher must be reversibleand it is undesirable for the output to be longer than the input. Until the announcement of NIST's AES contest, the majority of block ciphers followed the example of the DES in using a block size of 64 bits (8 bytes). However, the birthday paradox In probability theory, the birthday problem asks for the probability that, in a set of randomly chosen people, at least two will share the same birthday. The birthday paradox is the counterintuitive fact that only 23 people are needed for that ... indicates that after accumulating several blocks equal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Madryga
In cryptography, Madryga is a block cipher published in 1984 by W. E. Madryga. It was designed to be easy and efficient for implementation in software. Serious weaknesses have since been found in the algorithm, but it was one of the first encryption algorithms to make use of data-dependent rotations, later used in other ciphers, such as RC5 and RC6. In his proposal, Madryga set forth twelve design objectives that are generally considered to be good goals in the design of a block cipher. DES had already fulfilled nine of them. The three that DES did not fulfill were: # Any possible key should produce a strong cipher. (Meaning no weak keys, which DES has.) # The length of the key and the text should be adjustable to meet varying security requirements. # The algorithm should be efficiently implementable in software on large mainframes, minicomputers, and microcomputers, and in discrete logic. (DES has a large amount of bitwise permutations, which are inefficient in software implemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feistel Cipher
In cryptography, a Feistel cipher (also known as Luby–Rackoff block cipher) is a symmetric structure used in the construction of block ciphers, named after the German-born physicist and cryptographer Horst Feistel, who did pioneering research while working for IBM; it is also commonly known as a Feistel network. A large number of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a " round function" a fixed number of times. History Many modern symmetric block ciphers are based on Feistel networks. Feistel networks were first seen commercially in IBM's Lucifer cipher, designed by Horst Feistel and Don Coppersmith in 1973. Feistel networks gained respectability when the U.S. Federal Government adopted the DES (a cipher based on Lucifer, with cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]