RC5
   HOME
*





RC5
In cryptography, RC5 is a symmetric-key block cipher notable for its simplicity. Designed by Ronald Rivest in 1994, ''RC'' stands for "Rivest Cipher", or alternatively, "Ron's Code" (compare RC2 and RC4). The Advanced Encryption Standard (AES) candidate RC6 was based on RC5. Description Unlike many schemes, RC5 has a variable block size (32, 64 or 128 bits), key size (0 to 2040 bits) and number of rounds (0 to 255). The original suggested choice of parameters were a block size of 64 bits, a 128-bit key and 12 rounds. A key feature of RC5 is the use of data-dependent rotations; one of the goals of RC5 was to prompt the study and evaluation of such operations as a cryptographic primitive . RC5 also consists of a number of modular additions and eXclusive OR (XOR)s. The general structure of the algorithm is a Feistel-like network. The encryption and decryption routines can be specified in a few lines of code. The key schedule, however, is more complex, expanding the key using an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RC5 InfoBox Diagram
In cryptography, RC5 is a symmetric-key block cipher notable for its simplicity. Designed by Ronald Rivest in 1994, ''RC'' stands for "Rivest Cipher", or alternatively, "Ron's Code" (compare RC2 and RC4). The Advanced Encryption Standard (AES) candidate RC6 was based on RC5. Description Unlike many schemes, RC5 has a variable block size (32, 64 or 128 bits), key size (0 to 2040 bits) and number of rounds (0 to 255). The original suggested choice of parameters were a block size of 64 bits, a 128-bit key and 12 rounds. A key feature of RC5 is the use of data-dependent rotations; one of the goals of RC5 was to prompt the study and evaluation of such operations as a cryptographic primitive . RC5 also consists of a number of modular additions and eXclusive OR (XOR)s. The general structure of the algorithm is a Feistel-like network. The encryption and decryption routines can be specified in a few lines of code. The key schedule, however, is more complex, expanding the key using an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Block Cipher
In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called ''blocks''. Block ciphers are specified cryptographic primitive, elementary components in the design of many cryptographic protocols and are widely used to encryption, encrypt large amounts of data, including in data exchange protocols. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key. A multitude of block cipher modes of operation, modes of operation have been designed to allow their repeated use in a secure way to achieve the security goals of confidentiality and authentication, authenticity. However, block ciphers may also feature as building blocks in other cryptographic protocols, such as universal hash functions and pseudorandom number generators. Definition A block cipher consists of two paired algorithms, one for encryption, , and the othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

RSA Security
RSA Security LLC, formerly RSA Security, Inc. and doing business as RSA, is an American computer and network security company with a focus on encryption and encryption standards. RSA was named after the initials of its co-founders, Ron Rivest, Adi Shamir and Leonard Adleman, after whom the RSA public key cryptography algorithm was also named. Among its products is the SecurID authentication token. The BSAFE cryptography libraries were also initially owned by RSA. RSA is known for incorporating backdoors developed by the NSA in its products. It also organizes the annual RSA Conference, an information security conference. Founded as an independent company in 1982, RSA Security was acquired by EMC Corporation in 2006 for US$2.1 billion and operated as a division within EMC. When EMC was acquired by Dell Technologies in 2016, RSA became part of the Dell Technologies family of brands. On 10 March 2020, Dell Technologies announced that they will be selling RSA Security to a consorti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nothing Up My Sleeve Number
In cryptography, nothing-up-my-sleeve numbers are any numbers which, by their construction, are above suspicion of hidden properties. They are used in creating cryptographic functions such as hashes and ciphers. These algorithms often need randomized constants for mixing or initialization purposes. The cryptographer may wish to pick these values in a way that demonstrates the constants were not selected for a nefarious purpose, for example, to create a backdoor to the algorithm. These fears can be allayed by using numbers created in a way that leaves little room for adjustment. An example would be the use of initial digits from the number as the constants. Using digits of millions of places after the decimal point would not be considered trustworthy because the algorithm designer might have selected that starting point because it created a secret weakness the designer could later exploit. Digits in the positional representations of real numbers such as , ''e'', and irration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ron Rivest
Ronald Linn Rivest (; born May 6, 1947) is a cryptographer and an Institute Professor at MIT. He is a member of MIT's Department of Electrical Engineering and Computer Science (EECS) and a member of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL). His work has spanned the fields of algorithms and combinatorics, cryptography, machine learning, and election integrity. Rivest is one of the inventors of the RSA algorithm (along with Adi Shamir and Len Adleman). He is the inventor of the symmetric key encryption algorithms RC2, RC4, RC5, and co-inventor of RC6. The "RC" stands for "Rivest Cipher", or alternatively, "Ron's Code". (RC3 was broken at RSA Security during development; similarly, RC1 was never published.) He also authored the MD2, MD4, MD5 and MD6 cryptographic hash functions. Education Rivest earned a Bachelor's degree in Mathematics from Yale University in 1969, and a Ph.D. degree in Computer Science from Stanford University in 1974 for rese ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Red Pike (cipher)
Red Pike is a classified United Kingdom government encryption algorithm, proposed for use by the National Health Service by GCHQ, but designed for a "broad range of applications in the British government. Little is publicly known about Red Pike, except that it is a block cipher with a 64-bit block size and 64-bit key length. According to the academic study of the cipher cited below and quoted in a paper by Ross Anderson and Markus Kuhn, it "uses the same basic operations as RC5" (add, XOR, and left shift) and "has no look-up tables, virtually no key schedule and requires only five lines of code"; "the influence of each key bit quickly cascades" and "each encryption involves of the order of 100 operations". Red Pike is available to approved British government contractors in software form, for use in confidential (not secret) government communication systems. GCHQ also designed the Rambutan cryptosystem for the same segment. Given that Red Pike is a British encryption algorithm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Akelarre (cipher)
Akelarre is a block cipher proposed in 1996, combining the basic design of IDEA with ideas from RC5. It was shown to be susceptible to a ciphertext-only attack in 1997. Akelarre is a 128-bit block cipher with a variable key-length which must be some multiple of 64 bits. The number of rounds is variable, but four are suggested. The round function of Akelarre is similar to IDEA in structure. After the successful cryptanalysis of Akelarre, its designers responded with an updated variant called Ake98. This cipher differs from the original Akelarre in the new ''AR-box'' (addition–rotation box), the swapping of words at the end of a round, and the addition of subkeys at the beginning of each round. In 2004, Jorge Nakahara, Jr. and Daniel Santana de Freitas found large classes of weak key In cryptography, a weak key is a key, which, used with a specific cipher, makes the cipher behave in some undesirable way. Weak keys usually represent a very small fraction of the overall keys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




RC4 (cipher)
In cryptography, RC4 (Rivest Cipher 4, also known as ARC4 or ARCFOUR, meaning Alleged RC4, see below) is a stream cipher. While it is remarkable for its simplicity and speed in software, multiple vulnerabilities have been discovered in RC4, rendering it insecure. It is especially vulnerable when the beginning of the output keystream is not discarded, or when nonrandom or related keys are used. Particularly problematic uses of RC4 have led to very insecure protocols such as WEP. , there is speculation that some state cryptologic agencies may possess the capability to break RC4 when used in the TLS protocol. IETF has published RFC 7465 to prohibit the use of RC4 in TLS; Mozilla and Microsoft have issued similar recommendations. A number of attempts have been made to strengthen RC4, notably Spritz, RC4A, VMPC, and RC4+. History RC4 was designed by Ron Rivest of RSA Security in 1987. While it is officially termed "Rivest Cipher 4", the RC acronym is alternatively understood to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data. In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on Novemb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Block Size (cryptography)
In modern cryptography, symmetric key ciphers are generally divided into stream ciphers and block ciphers. Block ciphers operate on a fixed length string of bits. The length of this bit string is the block size. Both the input (plaintext) and output (ciphertext) are the same length; the output cannot be shorter than the input this follows logically from the pigeonhole principle and the fact that the cipher must be reversibleand it is undesirable for the output to be longer than the input. Until the announcement of NIST's AES contest, the majority of block ciphers followed the example of the DES in using a block size of 64 bits (8 bytes). However the birthday paradox tells us that after accumulating a number of blocks equal to the square root of the total number possible, there will be an approximately 50% chance of two or more being the same, which would start to leak information about the message contents. Thus even when used with a proper encryption mode (e.g. CBC or OFB), only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Key Size
In cryptography, key size, key length, or key space refer to the number of bits in a key used by a cryptographic algorithm (such as a cipher). Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), since the security of all algorithms can be violated by brute-force attacks. Ideally, the lower-bound on an algorithm's security is by design equal to the key length (that is, the security is determined entirely by the keylength, or in other words, the algorithm's design does not detract from the degree of security inherent in the key length). Indeed, most symmetric-key algorithms are designed to have security equal to their key length. However, after design, a new attack might be discovered. For instance, Triple DES was designed to have a 168-bit key, but an attack of complexity 2112 is now known (i.e. Triple DES now only has 112 bits of security, and of the 168 bits in the key the attack has rendered 5 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Madryga
In cryptography, Madryga is a block cipher published in 1984 by W. E. Madryga. It was designed to be easy and efficient for implementation in software. Serious weaknesses have since been found in the algorithm, but it was one of the first encryption algorithms to make use of data-dependent rotations, later used in other ciphers, such as RC5 and RC6. In his proposal, Madryga set forth twelve design objectives that are generally considered to be good goals in the design of a block cipher. DES had already fulfilled nine of them. The three that DES did not fulfill were: # Any possible key should produce a strong cipher. (Meaning no weak keys, which DES has.) # The length of the key and the text should be adjustable to meet varying security requirements. # The algorithm should be efficiently implementable in software on large mainframes, minicomputers, and microcomputers, and in discrete logic. (DES has a large amount of bitwise permutations, which are inefficient in software implement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]