HOME



picture info

Runge–Kutta Methods
In numerical analysis, the Runge–Kutta methods ( ) are a family of Explicit and implicit methods, implicit and explicit iterative methods, List of Runge–Kutta methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. These methods were developed around 1900 by the German mathematicians Carl Runge and Wilhelm Kutta. The Runge–Kutta method The most widely known member of the Runge–Kutta family is generally referred to as "RK4", the "classic Runge–Kutta method" or simply as "the Runge–Kutta method". Let an initial value problem be specified as follows: : \frac = f(t, y), \quad y(t_0) = y_0. Here y is an unknown function (scalar or vector) of time t, which we would like to approximate; we are told that \frac, the rate at which y changes, is a function of t and of y itself. At the initial time t_0 the corresponding y value is y_0. The function f and the initial conditions t_0, y_0 are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




List Of Runge–Kutta Methods
Runge–Kutta methods are methods for the numerical solution of the ordinary differential equation :\frac = f(t, y). Explicit and implicit methods, Explicit Runge–Kutta methods take the form :\begin y_ &= y_n + h \sum_^s b_i k_i \\ k_1 &= f(t_n, y_n), \\ k_2 &= f(t_n+c_2h, y_n+h(a_k_1)), \\ k_3 &= f(t_n+c_3h, y_n+h(a_k_1+a_k_2)), \\ &\;\;\vdots \\ k_i &= f\left(t_n + c_i h, y_n + h \sum_^ a_ k_j\right). \end Stages for Explicit and implicit methods, implicit methods of s stages take the more general form, with the Explicit and implicit methods#Computation, solution to be found over all s :k_i = f\left(t_n + c_i h, y_n + h \sum_^ a_ k_j\right). Each method listed on this page is defined by its Butcher tableau, which puts the coefficients of the method in a table as follows: : \begin c_1 & a_ & a_& \dots & a_\\ c_2 & a_ & a_& \dots & a_\\ \vdots & \vdots & \vdots& \ddots& \vdots\\ c_s & a_ & a_& \dots & a_ \\ \hline & b_1 & b_2 & \dots & b_s\\ \end For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comparison Of The Runge-Kutta Methods For The Differential Equation (red Is The Exact Solution)
Comparison or comparing is the act of evaluating two or more things by determining the relevant, comparable characteristics of each thing, and then determining which characteristics of each are similar to the other, which are different, and to what degree. Where characteristics are different, the differences may then be evaluated to determine which thing is best suited for a particular purpose. The description of similarities and differences found between the two things is also called a comparison. Comparison can take many distinct forms, varying by field: To compare things, they must have characteristics that are similar enough in relevant ways to merit comparison. If two things are too different to compare in a useful way, an attempt to compare them is colloquially referred to in English as "comparing apples and oranges." Comparison is widely used in society, in science and the arts. General usage Comparison is a natural activity, which even animals engage in when decidin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big O Notation
Big ''O'' notation is a mathematical notation that describes the asymptotic analysis, limiting behavior of a function (mathematics), function when the Argument of a function, argument tends towards a particular value or infinity. Big O is a member of a #Related asymptotic notations, family of notations invented by German mathematicians Paul Gustav Heinrich Bachmann, Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for '':wikt:Ordnung#German, Ordnung'', meaning the order of approximation. In computer science, big O notation is used to Computational complexity theory, classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetic function, arithmetical function and a better understood approximation; one well-known exam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adaptive Runge–Kutta Methods
Adaptation, in biology, is the process or trait by which organisms or population better match their environment Adaptation may also refer to: Arts * Adaptation (arts), a transfer of a work of art from one medium to another ** Film adaptation, a story from another work, adapted into a film ** Literary adaptation, a story from a literary source, adapted into another work ** Novelization, the adaptation of another work into a novel ** Theatrical adaptation, a story from another work, adapted into a play * ''Adaptation'' (film), a 2002 film by Spike Jonze * "Adaptation" (''The Walking Dead''), a television episode *''Adaptation'', a 2012 novel by Malinda Lo *"Adaptation", a song by the Weekend from his 2013 album '' Kiss Land'' Biology and medicine * Adaptation (eye), the eye's adjustment to light ** Chromatic adaptation, visual systems' adjustments to changes in illumination for preservation of colors ** Prism adaptation, sensory-motor adjustments after the visual field has b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Partial Differential Equations
Numerical may refer to: * Number * Numerical digit * Numerical analysis Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
{{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stiff Equation
In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution. When integrating a differential equation numerically, one would expect the requisite step size to be relatively small in a region where the solution curve displays much variation and to be relatively large where the solution curve straightens out to approach a line with slope nearly zero. For some problems this is not the case. In order for a numerical method to give a reliable solution to the differential system sometimes the step size is required to be at an unacceptably small level in a region where the solution curve is very smooth. The phenomenon is known as ''stiffness''. In some cases there may b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Explicit And Implicit Methods
Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary differential equation, ordinary and partial differential equations, as is required in computer simulations of Process (science), physical processes. ''Explicit methods'' calculate the state of a system at a later time from the state of the system at the current time, while ''implicit methods'' find a solution by solving an equation involving both the current state of the system and the later one. Mathematically, if Y(t) is the current system state and Y(t+\Delta t) is the state at the later time (\Delta t is a small time step), then, for an explicit method : Y(t+\Delta t) = F(Y(t))\, while for an implicit method one solves an equation : G\Big(Y(t), Y(t+\Delta t)\Big)=0 \qquad (1)\, to find Y(t+\Delta t). Computation Implicit methods require an extra computation (solving the above equation), and they can be much harder to impl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dormand–Prince Method
In numerical analysis, the Dormand–Prince (RKDP) method or DOPRI method, is an embedded method for solving ordinary differential equations (ODE). The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions. The difference between these solutions is then taken to be the error of the (fourth-order) solution. This error estimate is very convenient for adaptive stepsize integration algorithms. Other similar integration methods are Runge–Kutta–Fehlberg method, Fehlberg (RKF) and Cash–Karp (RKCK). The Dormand–Prince method has seven stages, but it uses only six function evaluations per step because it has the "First Same As Last" (FSAL) property: the last stage is evaluated at the same point as the first stage of the next step. Dormand and Prince chose the coefficients of their method to minimize the error of the fifth-order solution. This is the main difference wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cash–Karp Method
In numerical analysis, the Cash–Karp method is a method for solving ordinary differential equations (ODEs). It was proposed by Professor Jeff R. Cash from Imperial College London and Alan H. Karp from IBM Scientific Center. The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions. The difference between these solutions is then taken to be the error of the (fourth order) solution. This error estimate is very convenient for adaptive stepsize integration algorithms. Other similar integration methods are Fehlberg (RKF) and Dormand–Prince (RKDP). The Butcher tableau is: The first row of ''b'' coefficients gives the fifth-order accurate solution, and the second row gives the fourth-order solution. See also * Adaptive Runge–Kutta methods * List of Runge–Kutta methods Runge–Kutta methods are methods for the numerical solution of the ordinary differential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bogacki–Shampine Method
The Bogacki–Shampine method is a method for the numerical solution of ordinary differential equations, that was proposed by Przemysław Bogacki and Lawrence F. Shampine in 1989 . The Bogacki–Shampine method is a Runge–Kutta method of order three with four stages with the First Same As Last (FSAL) property, so that it uses approximately three function evaluations per step. It has an embedded second-order method which can be used to implement adaptive step size. The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB . Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required. Bogacki and Shampine argue that their method outperforms other third-order methods with an embedded method of order two. The Butcher tableau A butcher is a person who may slaughter animals, dress their flesh, se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Runge–Kutta–Fehlberg Method
In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods. The novelty of Fehlberg's method is that it is an embedded method from the Runge–Kutta family, meaning that it reuses the same intermediate calculations to produce two estimates of different accuracy, allowing for automatic error estimation. The method presented in Fehlberg's 1969 paper has been dubbed the RKF45 method, and is a method of order O(''h''4) with an error estimator of order O(''h''5). By performing one extra calculation, the error in the solution can be estimated and controlled by using the higher-order embedded method that allows for an adaptive stepsize to be determined automatically. Butcher tableau for Fehlberg's 4(5) method Any Runge–Kutta method is uniquely identifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heun's Method
In mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem: :y'(t) = f(t,y(t)), \qquad \qquad y(t_0)=y_0, by way of Heun's method, is to first calculate the intermediate value \tilde_ and then the final approximation y_ at the next integration point. :\tilde_ = y_i + h f(t_i,y_i) :y_ = y_i + \frac (t_i, y_i) + f(t_,\tilde_) : where h is the step size and t_=t_i+h. Description Euler's method is used as the foundation for Heun's method. Euler's method uses the line tangent to the function at the beginning of the interva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]