HOME
*





Risk-based Inspection
Risk Based Inspection (RBI) is an Optimal maintenance business process used to examine equipment such as pressure vessels, (QOC) quick opening closure - doors, heat exchangers, and piping in industrial plants. RBI is a decision-making methodology for optimizing inspection plans. The RBI concept lies in that the risk of failure can be assessed in relation to a level that is acceptable, and inspection and repair used to ensure that the level of risk is below that acceptance limit. It examines the Health, Safety and Environment (HSE) and business risk of ‘active’ and ‘potential’ Damage Mechanisms (DMs) to assess and rank failure probability and consequence. This ranking is used to optimize inspection intervals based on site-acceptable risk levels and operating limits, while mitigating risks as appropriate. RBI analysis can be qualitative, quantitative or semi-quantitative in nature. Probability of Failure (PoF) is estimated on the basis of the types of degradation mechanisms o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optimal Maintenance
Optimal maintenance is the discipline within operations research concerned with maintaining a system in a manner that maximizes profit or minimizes cost. Cost functions depending on the reliability, availability and maintainability characteristics of the system of interest determine the parameters to minimize. Parameters often considered are the cost of failure, the cost per time unit of "downtime" (for example: revenue losses), the cost (per time unit) of corrective maintenance, the cost per time unit of preventive maintenance and the cost of repairable system replacement assady and Pohl The foundation of any maintenance model relies on the correct description of the underlying deterioration process and failure behavior of the component, and on the relationships between maintained components in the product breakdown (system / sub-system / assembly / sub-assembly...). Optimal Maintenance strategies are often constructed using stochastic models and focus on finding an optimal inspec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accuracy
Accuracy and precision are two measures of ''observational error''. ''Accuracy'' is how close a given set of measurements (observations or readings) are to their ''true value'', while ''precision'' is how close the measurements are to each other. In other words, ''precision'' is a description of ''random errors'', a measure of statistical variability. ''Accuracy'' has two definitions: # More commonly, it is a description of only '' systematic errors'', a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this ''trueness''. # Alternatively, ISO defines accuracy as describing a combination of both types of observational error (random and systematic), so high accuracy requires both high precision and high trueness. In the first, more common definition of "accuracy" above, the concept is independent of "precision", so a particular set of data can be said to be accurate, precise, both, or n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accuracy And Precision
Accuracy and precision are two measures of ''observational error''. ''Accuracy'' is how close a given set of measurements ( observations or readings) are to their ''true value'', while ''precision'' is how close the measurements are to each other. In other words, ''precision'' is a description of '' random errors'', a measure of statistical variability. ''Accuracy'' has two definitions: # More commonly, it is a description of only '' systematic errors'', a measure of statistical bias of a given measure of central tendency; low accuracy causes a difference between a result and a true value; ISO calls this ''trueness''. # Alternatively, ISO defines accuracy as describing a combination of both types of observational error (random and systematic), so high accuracy requires both high precision and high trueness. In the first, more common definition of "accuracy" above, the concept is independent of "precision", so a particular set of data can be said to be accurate, precise, both, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Risk Matrix
A risk matrix is a matrix that is used during risk assessment to define the level of risk by considering the category of probability or likelihood against the category of consequence severity. This is a simple mechanism to increase visibility of risks and assist management decision making. Definitions Risk is the lack of certainty about the outcome of making a particular choice. Statistically, the level of downside risk can be calculated as the product of the probability that harm occurs (e.g., that an accident happens) multiplied by the severity of that harm (i.e., the average amount of harm or more conservatively the maximum credible amount of harm). In practice, the risk matrix is a useful approach where either the probability or the harm severity cannot be estimated with accuracy and precision. Although standard risk matrices exist in certain contexts (e.g. US DoD, NASA, ISO),International Organization for Standardization, Space Systems Risk Management, ISO 17666, individual pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Engineering
Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad range of more specialized List of engineering branches, fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering. The term ''engineering'' is derived from the Latin ''ingenium'', meaning "cleverness" and ''ingeniare'', meaning "to contrive, devise". Definition The American Engineers' Council for Professional Development (ECPD, the predecessor of Accreditation Board for Engineering and Technology, ABET) has defined "engineering" as: The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Piping Corrosion Circuit
Piping corrosion circuit or Corrosion loop / Piping Circuitization and Corrosion Modelling, is carried out as part of either a Risk Based Inspection analysis (RBI) or Materials Operating Envelope analysis (MOE). It is the systematization of the piping components versus failure modes analysis into materials operating envelope. It groups piping materials / chemical make-up into systems / sub systems and assigns corrosion mechanisms. These are then monitored over the operating lifetime of the facility. This analysis is performed on circuit inspection results to determine and optimize circuit corrosion rates and measured thickness/dates for circuit components. Corrosion Circuits are utilized in the Integrity Management Plan (IMP) which forms a part of the overall Asset integrity management system and is an integral part of any RBI analysis. Many times a "system" will be a broad overview of the facilities process flow, broken by stream constituents, while a circuit level analysis break ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-destructive Testing
Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integrity Engineering Audit
An Integrity Engineering Audit is carried out within an Integrity engineering function so as to ensure compliance with international, national and company specific standards and regulations. It is carried out in order to prove that the system is compliant, transparent, effective and efficient. API Recommended Practice 580, Risk-Based Inspection (see American Petroleum Institute) outlines such an audit as part of a Risk Based Inspection program. It checks that the most efficient and cost effective implementation of inspections and integrity management programs are being carried out. It ensures that the integrity of plant facilities including all onshore and offshore structures and pipelines, stationary equipment, piping systems are being correctly addressed. It checks and ensures that the Integrity Engineer has identified, investigated and assessed all deterioration/corrosion as well as timely maintenance of the affected facilities. It audits the Inspection and Corrosion Contro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reliability Engineering
Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time. Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time. The reliability function is theoretically defined as the probability of success at time t, which is denoted R(t). This probability is estimated from detailed (physics of failure) analysis, previous data sets or through reliability testing and reliability modelling. Availability, testability, maintainability and maintenance, repair and operations, maintenance are often defined as a part of "reliability engineering" in reliability programs. Reliability often plays the key role in the cost-effectiveness of systems. Reliability engineering deals with the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]