Relativistic Dynamics
   HOME
*





Relativistic Dynamics
''For classical dynamics at relativistic speeds, see relativistic mechanics#Relativistic dynamics, relativistic mechanics.'' Relativistic dynamics refers to a combination of Theory of relativity, relativistic and quantum concepts to describe the relationships between the motion and properties of a relativistic system and the forces acting on the system. What distinguishes relativistic dynamics from other physical theories is the use of an Scale invariance, invariant scalar evolution parameter to monitor the historical evolution of space-time events. In a scale-invariant theory, the strength of particle interactions does not depend on the energy of the particles involved. Twentieth century experiments showed that the physical description of microscopic and submicroscopic objects moving at or near the speed of light raised questions about such fundamental concepts as space, time, mass, and energy. The theoretical description of the physical phenomena required the integration of concept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relativistic Mechanics
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light ''c''. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at ''any'' speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics. As with classical mechanics, the subject can be divided into "kin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Julian Schwinger
Julian Seymour Schwinger (; February 12, 1918 – July 16, 1994) was a Nobel Prize winning American theoretical physicist. He is best known for his work on quantum electrodynamics (QED), in particular for developing a relativistically invariant perturbation theory, and for renormalizing QED to one loop order. Schwinger was a physics professor at several universities. Schwinger is recognized as one of the greatest physicists of the twentieth century, responsible for much of modern quantum field theory, including a variational approach, and the equations of motion for quantum fields. He developed the first electroweak model, and the first example of confinement in 1+1 dimensions. He is responsible for the theory of multiple neutrinos, Schwinger terms, and the theory of the spin-3/2 field. Biography Early life and career Julian Seymour Schwinger was born in New York City, to Ashkenazi Jewish parents, Belle (née Rosenfeld) and Benjamin Schwinger, a garment manufacturer, who had e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Klein Paradox
In 1929, physicist Oskar Klein obtained a surprising result by applying the Dirac equation to the familiar problem of electron scattering from a potential barrier. In nonrelativistic quantum mechanics, electron tunneling into a barrier is observed, with exponential damping. However, Klein's result showed that if the potential is at least of the order of the electron mass, Ve\sim mc^2, the barrier is nearly transparent. Moreover, as the potential approaches infinity, the reflection diminishes and the electron is always transmitted. The immediate application of the paradox was to Rutherford's proton–electron model for neutral particles within the nucleus, before the discovery of the neutron. The paradox presented a quantum mechanical objection to the notion of an electron confined within a nucleus. This clear and precise paradox suggested that an electron could not be confined within a nucleus by any potential well. The meaning of this paradox was intensely debated at the tim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology. Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars. Scots-Irish physicist Lord Kelvin was the first to formulate a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Special Relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws of physics are invariant (that is, identical) in all inertial frames of reference (that is, frames of reference with no acceleration). # The speed of light in vacuum is the same for all observers, regardless of the motion of the light source or the observer. Origins and significance Special relativity was originally proposed by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".Albert Einstein (1905)''Zur Elektrodynamik bewegter Körper'', ''Annalen der Physik'' 17: 891; English translatioOn the Electrodynamics of Moving Bodiesby George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920). The incompa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antiparticles
In particle physics, every type of particle is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antielectron). While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron. Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle partners, one is designated as the normal particle (the one that occurs in matter usually interacted with in daily life). The other (usually given the prefix "anti-") is designated the ''antiparticle''. Particle–antiparticle pairs can annihilate each other, producing photons; since the charges of the particle and antiparticle are opposite, total charge is conserved. For example, the posit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vector (geometric)
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a '' directed line segment'', or graphically as an arrow connecting an ''initial point'' ''A'' with a ''terminal point'' ''B'', and denoted by \overrightarrow . A vector is what is needed to "carry" the point ''A'' to the point ''B''; the Latin word ''vector'' means "carrier". It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from ''A'' to ''B''. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the greatest mathematicians and physicists and among the most influential scientists of all time. He was a key figure in the philosophical revolution known as the Enlightenment. His book (''Mathematical Principles of Natural Philosophy''), first published in 1687, established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for developing infinitesimal calculus. In the , Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. Newton used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory of relativity, but he also made important contributions to the development of the theory of quantum mechanics. Relativity and quantum mechanics are the two pillars of modern physics. His mass–energy equivalence formula , which arises from relativity theory, has been dubbed "the world's most famous equation". His work is also known for its influence on the philosophy of science. He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory. His intellectual achievements and originality resulted in "Einstein" becoming synonymous with "genius". In 1905, a year sometimes described as his ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Constantin Piron
Constantin Piron (1932, Paris - 9 May 2012, Lausanne) was a Belgian physicist who worked for most of his career in Switzerland. In 1963 Piron earned his doctor of science degree from the University of Lausanne under the direction of Ernst Stueckelberg and Josef-Maria Jauch with a thesis on quantum logic, "Axiomatique quantique". He developed Jauch's methods (called the Geneva approach) for the foundations of quantum mechanics. Piron's Theorem (1964) is a famous representation theorem for quantum lattices. He was appointed assistant professor in the physics department of the University of Geneva in 1969 and professor ordinarius in 1974. He retired in 2000. Publications * ''Observables in General Quantum Theory: Lectures Delivered at the International School of Physics "Enrico Fermi", Foundations of Quantum Mechanics'', Institut de physique théorique, 1970 *''Foundations of Quantum Physics'', W.A. Benjamin Inc., Massachusetts, 1976 *''Mécanique quantique: bases et application ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Silvan S
Silvan may refer to: * Saint Silvan, Christian martyr * Silvan (illusionist), Italian magician * Silvan Byggemarked, Danish chain store that sells building materials * Silvan Elves, woodland elves of J. R. R. Tolkien's Middle-earth legendarium * Silvan Shalom, Tunisian-born Israeli politician * Silvan, Diyarbakır, city in the Diyarbakır Province of Turkey * Silvan, Victoria, suburb of Melbourne, Australia See also * Silvanus (other) * Silvanus (mythology), Roman deity from whom the adjective ''sylvan'' derives * Sylvain (other) * Sylvan (other) Sylvan or Sylvans (from the Latin ''silva'': "forest, woods") may refer to: Places United States * Sylvan, Illinois, a former settlement * Sylvan, Wisconsin, a town ** Sylvan (community), Wisconsin, an unincorporated area in the town * Sylvan T ...
{{disambig, hndis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]