Radon's Theorem
In geometry, Radon's theorem on convex sets, published by Johann Radon in 1921, states that:Any set of d + 2 points in Rd can be partitioned into two sets whose convex hulls intersect. A point in the intersection of these convex hulls is called a Radon point of the set.For example, in the case ''d'' = 2, any set of four points in the Euclidean plane can be partitioned in one of two ways. It may form a triple and a singleton, where the convex hull of the triple (a triangle) contains the singleton; alternatively, it may form two pairs of points that form the endpoints of two intersecting line segments. Proof and construction Consider any set X=\\subset \mathbf^d of ''d'' + 2 points in ''d''-dimensional space. Then there exists a set of multipliers ''a''1, ..., ''a''''d'' + 2, not all of which are zero, solving the system of linear equations : \sum_^ a_i x_i=0,\quad \sum_^ a_i=0, because there are ''d'' + 2 unknowns (the mul ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Borsuk–Ulam Theorem
In mathematics, the Borsuk–Ulam theorem states that every continuous function from an ''n''-sphere into Euclidean ''n''-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center. Formally: if f: S^n \to \R^n is continuous then there exists an x\in S^n such that: f(-x)=f(x). The case n=1 can be illustrated by saying that there always exist a pair of opposite points on the Earth's equator with the same temperature. The same is true for any circle. This assumes the temperature varies continuously in space, which is, however, not always the case. The case n=2 is often illustrated by saying that at any moment, there is always a pair of antipodal points on the Earth's surface with equal temperatures and equal barometric pressures, assuming that both parameters vary continuously in space. The Borsuk–Ulam theorem has several equivalent statements in terms o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Centerpoint (geometry)
In statistics and computational geometry, the notion of centerpoint is a generalization of the median to data in higher-dimensional Euclidean space. Given a set of points in ''d''-dimensional space, a centerpoint of the set is a point such that any hyperplane that goes through that point divides the set of points in two roughly equal subsets: the smaller part should have at least a 1/(''d'' + 1) fraction of the points. Like the median, a centerpoint need not be one of the data points. Every non-empty set of points (with no duplicates) has at least one centerpoint. Related concepts Closely related concepts are the Tukey depth of a point (the minimum number of sample points on one side of a hyperplane through the point) and a Tukey median of a point set (a point maximizing the Tukey depth). A centerpoint is a point of depth at least ''n''/(''d'' + 1), and a Tukey median must be a centerpoint, but not every centerpoint is a Tukey median. Both terms are named a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Approximation Algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Randomized Algorithm
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables. There is a distinction between algorithms that use the random input so that they always terminate with the correct answer, but where the expected running time is finite (Las Vegas algorithms, for example Quicksort), and algorithms which have a chance of producing an incorrect result ( Monte Carlo algorithms, for example the Monte Carlo algorithm for the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. In some cases, probabilistic algorithms are the only practical means of solving a problem. In common practice, randomized alg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
VC Dimension
VC may refer to: Military decorations * Victoria Cross, a military decoration awarded by the United Kingdom and other Commonwealth nations ** Victoria Cross for Australia ** Victoria Cross (Canada) ** Victoria Cross for New Zealand * Victorious Cross, Idi Amin's self-bestowed military decoration Organisations * Ocean Airlines (IATA airline designator 2003-2008), Italian cargo airline * Voyageur Airways (IATA airline designator since 1968), Canadian charter airline * Visual Communications, an Asian-Pacific-American media arts organization in Los Angeles, California * Viet Cong, a political and military organization during the Vietnam War (1959–1975) Education * Vanier College, Canada * Vassar College, US * Velez College, Philippines * Virginia College, US * Ventura College, US Places * Saint Vincent and the Grenadines (ISO country code) * Sri Lanka (ICAO airport prefix code) * Watsonian vice-counties, subdivisions of Great Britain or Ireland * Ventura County, in S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Helly's Theorem
Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913,. but not published by him until 1923, by which time alternative proofs by and had already appeared. Helly's theorem gave rise to the notion of a Helly family. Statement Let be a finite collection of convex subsets of \R^d, with n\geq d+1. If the intersection of every d+1 of these sets is nonempty, then the whole collection has a nonempty intersection; that is, :\bigcap_^n X_j\ne\varnothing. For infinite collections one has to assume compactness: Let \ be a collection of compact convex subsets of \R^d, such that every subcollection of cardinality at most d+1 has nonempty intersection. Then the whole collection has nonempty intersection. Proof We prove the finite version, using Radon's theorem as in the proof by . The infinite version then follows by the finite intersection property characterization of compactness: a collection of closed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Median
In geometry, the geometric median of a discrete point set in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances or absolute differences for one-dimensional data. It is also known as the spatial median, Euclidean minisum point, Torricelli point, or 1-median. It provides a measure of central tendency in higher dimensions and it is a standard problem in facility location, i.e., locating a facility to minimize the cost of transportation. The geometric median is an important estimator of location in statistics, because it minimizes the sum of the ''L''2 distances of the samples. It is to be compared to the mean, which minimizes the sum of the ''squared'' ''L''2 distances; and to the coordinate-wise median which minimizes the sum of the ''L''1 distances. The more general ''k''-median problem asks for the location of ''k'' cluster centers minimizing the sum o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Z2-index
Z, or z, is the twenty-sixth and last letter of the Latin alphabet. It is used in the modern English alphabet, in the alphabets of other Western European languages, and in others worldwide. Its usual names in English are ''zed'' (), which is most commonly used in British English, and ''zee'' (), most commonly used in American English, with an occasional archaic variant ''izzard'' ()."Z", ''Oxford English Dictionary,'' 2nd edition (1989); ''Merriam-Webster's Third New International Dictionary of the English Language, Unabridged'' (1993); "zee", ''op. cit''. Name In most English-speaking countries, including Australia, Canada, India, Ireland, New Zealand, South Africa and the United Kingdom, the letter's name is ''zed'' , reflecting its derivation from the Greek letter ''zeta'' (this dates to Latin, which borrowed Y and Z from Greek), but in American English its name is ''zee'' , analogous to the names for B, C, D, etc., and deriving from a late 17th-century English dialecta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deleted Join
In topology, a field of mathematics, the join of two topological spaces A and B, often denoted by A\ast B or A\star B, is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in A to every point in B. The join of a space A with itself is denoted by A^ := A\star A. The join is defined in slightly different ways in different contexts Geometric sets If A and B are subsets of the Euclidean space \mathbb^n, then: A\star B\ :=\ \,that is, the set of all line-segments between a point in A and a point in B. Some authors restrict the definition to subsets that are ''joinable'': any two different line-segments, connecting a point of A to a point of B, meet in at most a common endpoint (that is, they do not intersect in their interior). Every two subsets can be made "joinable". For example, if A is in \mathbb^n and B is in \mathbb^m, then A\times\\times\ and \\times B\times\ are joinable in \mathbb^. The figure above show ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jiří Matoušek (mathematician)
Jiří (Jirka) Matoušek (10 March 1963 – 9 March 2015) was a Czech mathematician working in computational geometry and algebraic topology. He was a professor at Charles University in Prague and the author of several textbooks and research monographs. Biography Matoušek was born in Prague. In 1986, he received his Master's degree at Charles University under Miroslav Katětov. From 1986 until his death he was employed at the Department of Applied Mathematics of Charles University, holding a professor position since 2000. He was also a visiting and later full professor at ETH Zurich. In 1996, he won the European Mathematical Society prize and in 2000 he won the Scientist award of the Learned Society of the Czech Republic. In 1998 he was an Invited Speaker of the International Congress of Mathematicians in Berlin. He became a fellow of the Learned Society of the Czech Republic in 2005. Matoušek's paper on computational aspects of algebraic topology won the Best Paper award ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alexander Schrijver
Alexander (Lex) Schrijver (born 4 May 1948 in Amsterdam) is a Dutch mathematician and computer scientist, a professor of discrete mathematics and optimization at the University of Amsterdam and a fellow at the Centrum Wiskunde & Informatica in Amsterdam.Profile CWI, retrieved 2012-03-30. Since 1993 he has been co-editor in chief of the journal ''''. Biography Schrijver earned his Ph.D. in 1977 from the Vrije Universiteit in Amsterdam, under the supervision of Pieter Cornelis Baayen. He worked for the Centrum Wiskunde & Informatica (under its former ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |