R-factor (crystallography)
   HOME
*





R-factor (crystallography)
In crystallography, the R-factor (sometimes called residual factor or reliability factor or the R-value or RWork) is a measure of the agreement between the crystallographic model and the experimental X-ray diffraction data. In other words, it is a measure of how well the refined structure predicts the observed data. The value is also sometimes called the discrepancy index, as it mathematically describes the difference between the experimental observations and the ideal calculated values. It is defined by the following equation: :R = \frac, where ''F'' is the so-called structure factor and the sum extends over all the reflections of X-rays measured and their calculated counterparts respectively. The structure factor is closely related to the intensity of the reflection it describes: :I_ \propto , F(hkl), ^2. The minimum possible value is zero, indicating perfect agreement between experimental observations and the structure factors predicted from the model. There is no theoretical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crystallography
Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The word "crystallography" is derived from the Greek word κρύσταλλος (''krystallos'') "clear ice, rock-crystal", with its meaning extending to all solids with some degree of transparency, and γράφειν (''graphein'') "to write". In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming that 2014 would be the International Year of Crystallography. denote a direction vector (in real space). * Coordinates in ''angle brackets'' or ''chevrons'' such as <100> denote a ''family'' of directions which are related by symmetry operations. In the cubic crystal system for example, would mean 00 10 01/nowiki> or the negative of any of those directions. * Miller indices in ''parentheses'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-ray Diffraction
X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the mean positions of the atoms in the crystal can be determined, as well as their chemical bonds, their crystallographic disorder, and various other information. Since many materials can form crystals—such as salts, metals, minerals, semiconductors, as well as various inorganic, organic, and biological molecules—X-ray crystallography has been fundamental in the development of many scientific fields. In its first decades of use, this method determined the size of atoms, the lengths and types of chemical bonds, and the atomic-scale differences among various mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Structure Factor
In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns (interference patterns) obtained in X-ray, electron and neutron diffraction experiments. Confusingly, there are two different mathematical expressions in use, both called 'structure factor'. One is usually written S(\mathbf); it is more generally valid, and relates the observed diffracted intensity per atom to that produced by a single scattering unit. The other is usually written F or F_ and is only valid for systems with long-range positional order — crystals. This expression relates the amplitude and phase of the beam diffracted by the (hk\ell) planes of the crystal ((hk\ell) are the Miller indices of the planes) to that produced by a single scattering unit at the vertices of the primitive unit cell. F_ is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cambridge Structural Database
The Cambridge Structural Database (CSD) is both a repository and a validated and curated resource for the three-dimensional structural data of molecules generally containing at least carbon and hydrogen, comprising a wide range of organic compound, organic, metalorganic, metal-organic and organometallic molecules. The specific entries are complementary to the other crystallographic databases such as the Protein Data Bank (PDB), Inorganic Crystal Structure Database and International Centre for Diffraction Data. The data, typically obtained by X-ray crystallography and less frequently by electron diffraction or neutron diffraction, and submitted by crystallography, crystallographers and chemists from around the world, are freely accessible (as deposited by authors) on the Internet via the CSD's parent organization's website (CCDC, Repository). The CSD is overseen by the not-for-profit incorporated company called the Cambridge Crystallographic Data Centre, CCDC. The CSD is a widely ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Patterson Function
The Patterson function is used to solve the phase problem in X-ray crystallography. It was introduced in 1935 by Arthur Lindo Patterson while he was a visiting researcher in the laboratory of Bertram Eugene Warren at MIT. The Patterson function is defined as :P(u,v,w) = \sum\limits_ \left, F_\^2 \;e^. It is essentially the Fourier transform of the intensities rather than the structure factors. The Patterson function is also equivalent to the electron density convolved with its inverse: :P\left(\vec\right) = \rho\left(\vec\right) * \rho\left(-\vec\right). Furthermore, a Patterson map of ''N'' points will have peaks, excluding the central (origin) peak and any overlap. The peaks' positions in the Patterson function are the interatomic distance vectors and the peak heights are proportional to the product of the number of electrons in the atoms concerned. Because for each vector between atoms ''i'' and ''j'' there is an oppositely oriented vector of the same length (between atoms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]