Quintom Scenario
   HOME





Quintom Scenario
The Quintom scenario was proposed in 2004 by Xin-Min Zhang et al., and is a hypothetical model of dark energy. The name of 'quintom' was derived from 'quintessence' from quintessence field and 'phantom' from phantom dark energy. The Quintom scenario was to fit the evolution of dark energy with the cosmological data. Equation of state In this scenario, the equation of state (EoS) \omega = p/\rho of the dark energy, relating its pressure and energy density, can cross the boundary \omega = -1 associated with the cosmological constant. The boundary separates the phantom-energy-like behavior with \omega -1. According to a no-go theorem, a single-field, single-fluid scalar model cannot cross \omega = -1. Achieving such a crossing requires at least two degrees of freedom in dark energy models built from ideal fluids or scalar fields. To allow the effective equation of state to cross -1, possible approaches include: * Multiple fields & extra degrees of freedom, e.g. additional sc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hidden Sector
In particle physics, the hidden sector, also known as the dark sector, is a hypothetical collection of yet to be observed quantum fields and their corresponding hypothetical particles. The interactions between the hidden sector particles and the Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ... particles are weak, indirect, and typically mediated through gravity or other new particles. Examples of new hypothetical mediating particles in this class of theories include the dark photon, sterile neutrino, and axion. In many cases, hidden sectors include a new gauge group that is independent from the Standard Model gauge group. The hidden sectors are commonly predicted by the models from string theory. They may be relevant as a source of dark matter and supersymm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure formation. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and Baryon#Baryonic matter, ordinary (baryonic) matter contribute 27% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2. p. 46. Retrieved 7 October 2013, "...dark energy: A smooth, persistent component of invisible energy, thought to make up about 70 percent of the energy density of the universe. Dark energy is smooth because it doesn't accumulate preferentially in galaxi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doi (identifier)
A digital object identifier (DOI) is a persistent identifier or handle used to uniquely identify various objects, standardized by the International Organization for Standardization (ISO). DOIs are an implementation of the Handle System; they also fit within the URI system (Uniform Resource Identifier). They are widely used to identify academic, professional, and government information, such as journal articles, research reports, data sets, and official publications. A DOI aims to resolve to its target, the information object to which the DOI refers. This is achieved by binding the DOI to metadata about the object, such as a URL where the object is located. Thus, by being actionable and interoperable, a DOI differs from ISBNs or ISRCs which are identifiers only. The DOI system uses the indecs Content Model to represent metadata. The DOI for a document remains fixed over the lifetime of the document, whereas its location and other metadata may change. Referring to an onl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The uniformity of the universe, known as the horizon and flatness problems, is explained through cosmic inflation: a phase of accelerated expansion during the earliest stages. A wide range of empirical evidence strongly favors the Big Bang event, which is now essentially universally accepted.: "At the same time that observations tipped the balance definitely in favor of the relativistic big-bang theory, ..." Detailed measurements of the expansion rate of the universe place the Big Bang singularity at an estimated  billion years ago, which is considered the age of the universe. Extrapolating this cosmic expansion backward in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Big Bounce
The Big Bounce hypothesis is a cosmological model for the origin of the known universe. It was originally suggested as a phase of the ''cyclic model'' or ''oscillatory universe'' interpretation of the Big Bang, where the first cosmological event was the result of the collapse of a previous universe. It receded from serious consideration in the early 1980s after inflation theory emerged as a solution to the horizon problem, which had arisen from advances in observations revealing the large-scale structure of the universe. Inflation was found to be inevitably eternal, creating an infinity of different universes with typically different properties, suggesting that the properties of the observable universe are a matter of chance. An alternative concept that included a Big Bounce was conceived as a predictive and falsifiable possible solution to the horizon problem. Investigation continued as of 2022. Expansion and contraction The concept of the Big Bounce envisions the Big Ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inflationary Cosmology
In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago). Inflation theory was developed in the late 1970s and early 1980s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Starobinsky, Guth, and Linde won the 2014 Kavli Prize "for pioneering the theory of cosmic inflation". It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DGP Model
The Dvali–Gabadadze–Porrati (DGP) model is a model of gravity proposed by Gia Dvali, Gregory Gabadadze, and Massimo Porrati in 2000. The model is popular among some model builders, but has resisted being embedded into string theory. Overview The DGP model assumes the existence of a 4+1-dimensional Minkowski space, within which ordinary 3+1-dimensional Minkowski space is embedded. The model assumes an action consisting of two terms: One term is the usual Einstein–Hilbert action, which involves only the 4-D spacetime dimensions. The other term is the equivalent of the Einstein–Hilbert action, as extended to all 5 dimensions. The 4-D term dominates at short distances, and the 5-D term dominates at long distances. The model was proposed in part in order to reproduce the cosmic acceleration of dark energy without any need for a small but non-zero vacuum energy density. But critics argue that this branch of the theory is unstable. However, the theory remains interesting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Horndeski's Theory
Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion. The theory was first proposed by Gregory Horndeski in 1974 and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy. Horndeski's theory contains many theories of gravity, including general relativity, Brans–Dicke theory, quintessence, dilaton, chameleon particle and covariant Galileon as special cases. Action Horndeski's theory can be written in terms of an action as S _,\phi= \int\mathrm^x\,\sqrt\left _,\phi.html" ;"title="sum_^\frac\mathcal_[g_,\phi">sum_^\frac\mathcal_[g_,\phi,+\mathcal_[g_,\psi_right] with the Lagrangian (field theory), Lagrangian densities \mathcal_ = G_(\phi,\, X) \mathcal_ = G_(\phi,\,X)\Box\phi \mathcal_ = G_(\phi,\,X)R+G_(\phi,\,X)\left left(\Box\phi\right)^-\phi_\phi^\right/math> \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dark Energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure formation. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and Baryon#Baryonic matter, ordinary (baryonic) matter contribute 27% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2. p. 46. Retrieved 7 October 2013, "...dark energy: A smooth, persistent component of invisible energy, thought to make up about 70 percent of the energy density of the universe. Dark energy is smooth because it doesn't accumulate preferentially in galaxi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric-affine Gravitation Theory
In comparison with General Relativity, dynamic variables of metric-affine gravitation theory are both a pseudo-Riemannian manifold, pseudo-Riemannian metric and a connection (vector bundle), general linear connection on a world manifold . Metric-affine gravitation theory has been suggested as a natural generalization of Einstein–Cartan theory of gravity with torsion tensor, torsion where a linear connection obeys the condition that a covariant derivative of a metric equals zero. Metric-affine gravitation theory straightforwardly comes from gauge gravitation theory where a general linear connection plays the role of a gauge theory, gauge field. Let TX be the tangent bundle over a manifold X provided with bundle coordinates . A general linear connection on TX is represented by a connection (fibred manifold), connection tangent-valued form: : \Gamma=dx^\lambda\otimes(\partial_\lambda +\Gamma_\lambda^\mu_\nu\dot x^\nu\dot\partial_\mu). It is associated to a connection (principal bundl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Energy Density
In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the ''useful'' or extractable energy is measured. It is sometimes confused with stored energy per unit mass, which is called ''specific energy'' or . There are different types of energy stored, corresponding to a particular type of reaction. In order of the typical magnitude of the energy stored, examples of reactions are: Nuclear power, nuclear, Chemical energy, chemical (including Electrochemistry, electrochemical), electrical, pressure, Deformation (engineering), material deformation or in Electromagnetic field, electromagnetic fields. Nuclear reactions take place in stars and nuclear power plants, both of which derive energy from the binding energy of nuclei. Chemical reactions are used by organisms to derive energy from food and by automobiles from the combustion of gasoline. Liqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]