Quasitransitive Relation
   HOME



picture info

Quasitransitive Relation
The mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by to study the consequences of Arrow's theorem. Formal definition A binary relation T over a set ''X'' is quasitransitive if for all ''a'', ''b'', and ''c'' in ''X'' the following holds: : (a\operatornameb) \wedge \neg(b\operatornamea) \wedge (b\operatornamec) \wedge \neg(c\operatornameb) \Rightarrow (a\operatornamec) \wedge \neg(c\operatornamea). If the relation is also antisymmetric, T is transitive. Alternately, for a relation T, define the asymmetric or "strict" part P: :(a\operatornameb) \Leftrightarrow (a\operatornameb) \wedge \neg(b\operatornamea). Then T is quasitransitive if and only if P is transitive. Examples Preferences are assumed to be quasitransitive (rather than transitive) in some econom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reflexive Relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Etymology The word ''reflexive'' is originally derived from the Medieval Latin ''reflexivus'' ('recoiling' reflex.html" ;"title="f. ''reflex">f. ''reflex'' or 'directed upon itself') (c. 1250 AD) from the classical Latin ''reflexus-'' ('turn away', 'reflection') + ''-īvus'' (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. ''Reflexive verb'' and ''Reflexive pronoun''). The first e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intransitivity
In mathematics, intransitivity (sometimes called nontransitivity) is a property of binary relations that are not transitive relations. That is, we can find three values a, b, and c where the transitive condition does not hold. Antitransitivity is a Mathematical jargon#stronger, stronger property which describes a relation where, for any three values, the transitivity condition never holds. Some authors use the term to refer to antitransitivity. Intransitivity A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C. A relation is if it is not transitive. Assuming the relation is named R, it is intransitive if: \lnot\left(\forall a, b, c: a R b \land b R c \implies a R c\right). This statement is equivalent to \exists a,b,c : a R b \land b R c \land \lnot(a R c). For example, the inequality relation, \neq, is intransitive. This can be demonstrated by replacing R with \neq and choosing a=1, b=2, and c=1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Converse Relation
In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if X and Y are sets and L \subseteq X \times Y is a relation from X to Y, then L^ is the relation defined so that yL^x if and only if xLy. In set-builder notation, :L^ = \. Since a relation may be represented by a logical matrix, and the logical matrix of the converse relation is the transpose of the original, the converse relation is also called the transpose relation. It has also been called the opposite or dual of the original relation, the inverse of the original relation,Gerard O'Regan (2016): ''Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications'' or the reciprocal L^ of the relation L. Other notations for the converse relation include L^, L^, \breve, L^, or L^. The notati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complementary Relation
In set theory, the complement of a set , often denoted by A^c (or ), is the set of elements not in . When all elements in the universe, i.e. all elements under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^c= U \setminus A = \. The absolute complement of is usually denoted by A^c. Other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of sets, also known as an -fold Cartesian product, which can be represented by an -dimensional array, where each element is an -tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Set-theoretic definition A rigorous definition of the Cartesian product re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Relation
In mathematics, a homogeneous relation (also called endorelation) on a set ''X'' is a binary relation between ''X'' and itself, i.e. it is a subset of the Cartesian product . This is commonly phrased as "a relation on ''X''" or "a (binary) relation over ''X''". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations. Terminology particular for graph theory is used for description, with an ordinary (undirected) graph presumed to correspond to a symmetric relation, and a general endorelation corresponding to a directed graph. An endorelation ''R'' corresponds to a logical matrix of 0s and 1s, where the expression ''xRy'' (''x'' is ''R''-related to ''y'') corresponds to an edge between ''x'' and ''y'' in the graph, and to a 1 in the square matrix of ''R''. It is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Acyclic Relation
This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles: * completeness properties of partial orders * distributivity laws of order theory In the following, partial orders will usually just be denoted by their carrier sets. As long as the intended meaning is clear from the context, \,\leq\, will suffice to denote the corresponding relational symbol, even without prior introduction. Furthermore, < will denote the strict order induced by \,\leq. __NOTOC__


A

* Acyclic. A is acyclic if it conta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coreflexive Relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Etymology The word ''reflexive'' is originally derived from the Medieval Latin ''reflexivus'' ('recoiling' reflex.html" ;"title="f. ''reflex">f. ''reflex'' or 'directed upon itself') (c. 1250 AD) from the classical Latin ''reflexus-'' ('turn away', 'reflection') + ''-īvus'' (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. ''Reflexive verb'' and ''Reflexive pronoun''). The first exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Empty Relation
In mathematics, a homogeneous relation (also called endorelation) on a set ''X'' is a binary relation between ''X'' and itself, i.e. it is a subset of the Cartesian product . This is commonly phrased as "a relation on ''X''" or "a (binary) relation over ''X''". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations. Terminology particular for graph theory is used for description, with an ordinary (undirected) graph presumed to correspond to a symmetric relation, and a general endorelation corresponding to a directed graph. An endorelation ''R'' corresponds to a logical matrix of 0s and 1s, where the expression ''xRy'' (''x'' is ''R''-related to ''y'') corresponds to an edge between ''x'' and ''y'' in the graph, and to a 1 in the square matrix of ''R''. It is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appears twice in the disjoint union, with two different labels. A disjoint union of an indexed family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injective function, injection of each A_i into A, such that the image (mathematics), images of these injections form a Partition (set theory), partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their Union (set theory), union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]