QoS Class Identifier
   HOME
*





QoS Class Identifier
QoS Class Identifier (QCI) is a mechanism used in 3GPP Long Term Evolution (LTE) networks to ensure carrier traffic is allocated appropriate Quality of Service (QoS). Different carrier traffic requires different QoS and therefore different QCI values. QCI value 9 is typically used for the default carrier of a UE/PDN for non privileged subscribers. Background To ensure that carrier traffic in LTE networks is appropriately handled, a mechanism is needed to classify the different types of carriers into different classes, with each class having appropriate QoS parameters for the traffic type. Examples of the QoS parameters include Guaranteed Bit Rate (GBR) or non-Guaranteed Bit Rate (non-GBR), Priority Handling, Packet Delay Budget and Packet Error Loss rate. This overall mechanism is called QCI. Mechanism The QoS concept as used in LTE networks is class-based, where each carrier type is assigned one QoS Class Identifier (QCI) by the network. The QCI is a scalar that is used withi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LTE (telecommunication)
In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals, based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported. The standard is developed by the 3GPP (3rd Generation Partnership Project) and is specified in its Release 8 document series, with minor enhancements described in Release 9. LTE is also called 3.95G and has been marketed as "4G LTE" and "Advanced 4G"; but it does not meet the technical criteria of a 4G wireless service, as specified in the 3GPP Release 8 and 9 document series for LTE Advanced. The requirements were set forth by the ITU-R organisation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quality Of Service
Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc. In the field of computer networking and other packet-switched telecommunication networks, quality of service refers to traffic prioritization and resource reservation control mechanisms rather than the achieved service quality. Quality of service is the ability to provide different priorities to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow. Quality of service is particularly important for the transport of traffic with special requirements. In particular, developers have introduced Voice ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ENodeB
E-UTRAN Node B, also known as Evolved Node B (abbreviated as eNodeB or eNB), is the element in E-UTRA of LTE that is the evolution of the element Node B in UTRA of UMTS. It is the hardware that is connected to the mobile phone network that communicates directly wirelessly with mobile handsets ( UEs), like a base transceiver station (BTS) in GSM networks. Traditionally, a Node B has minimum functionality, and is controlled by a Radio Network Controller (RNC). However, with an eNB, there is no separate controller element. This simplifies the architecture and allows lower response times. Differences between an evolved Node B and a Node B Air interface eNB uses the E-UTRA protocols OFDMA (downlink) and SC-FDMA (uplink) on its LTE-Uu interface. By contrast, NodeB uses the UTRA protocols WCDMA or TD-SCDMA on its Uu interface. Control functionality eNB embeds its own control functionality, rather than using a RNC (Radio Network Controller) as does a Node B. Network interfac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Architecture Evolution
System Architecture Evolution (SAE) is the core network architecture of mobile communications protocol group 3GPP's LTE wireless communication standard. SAE is the evolution of the GPRS Core Network, but with a simplified architecture; an all-IP Network (AIPN); support for higher throughput and lower latency radio access networks (RANs); and support for, and mobility between, multiple heterogeneous access networks, including E-UTRA ( LTE and LTE Advanced air interface), and 3GPP legacy systems (for example GERAN or UTRAN, air interfaces of GPRS and UMTS respectively), but also non-3GPP systems (for example Wi-Fi, WiMAX or CDMA2000). SAE Architecture The SAE has a flat, all-IP architecture with separation of control plane and user plane traffic. The main component of the SAE architecture is the Evolved Packet Core (EPC), also known as SAE Core. The EPC will serve as the equivalent of GPRS networks (via the Mobility Management Entity, Serving Gateway and PDN Gateway subcomponent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Policy And Charging Rules Function
Policy and Charging Rules Function (PCRF) is the software node designated in real-time to determine policy rules in a multimedia network. As a policy tool, the PCRF plays a central role in next-generation networks. Unlike earlier policy engines that were added onto an existing network to enforce policy, the PCRF is a software component that operates at the network core and accesses subscriber databases and other specialized functions, such as a charging system, in a centralized manner. Because it operates in real time, the PCRF has an increased strategic significance and broader potential role than traditional policy engines. This has led to a proliferation of PCRF products since 2008. The PCRF is the part of the network architecture that aggregates information to and from the network, operational support systems, and other sources (such as portals) in real time, supporting the creation of rules and then automatically making policy decisions for each subscriber The subscr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differentiated Services Code Point
Differentiated services or DiffServ is a computer networking architecture that specifies a mechanism for classifying and managing network traffic and providing quality of service (QoS) on modern IP networks. DiffServ can, for example, be used to provide low-latency to critical network traffic such as voice or streaming media while providing best-effort service to non-critical services such as web traffic or file transfers. DiffServ uses a 6-bit differentiated services code point (DSCP) in the 8-bit differentiated services field (DS field) in the IP header for packet classification purposes. The DS field replaces the outdated IPv4 TOS field. Background Modern data networks carry many different types of services, including voice, video, streaming music, web pages and email. Many of the proposed QoS mechanisms that allowed these services to co-exist were both complex and failed to scale to meet the demands of the public Internet. In December 1998, the IETF published - ''Definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


User Equipment
In the Universal Mobile Telecommunications System (UMTS) and 3GPP Long Term Evolution (LTE), user equipment (UE) is any device used directly by an end-user to communicate. It can be a hand-held telephone, a laptop computer equipped with a mobile broadband adapter, or any other device. It connects to the base station Node B/eNodeB as specified in the ETSI 125/136-series and 3GPP 25/36-series of specifications. It roughly corresponds to the mobile station (MS) in GSM systems. The radio interface between the UE and the Node B is called ''Uu''. Functionality UE handles the following tasks towards the core network: * Mobility management * Call control * Session management * Identity management The corresponding protocols are transmitted transparently via a Node B, that is, Node B does not change, use or understand the information. These protocols are also referred to as ''Non Access Stratum Non-access stratum (NAS) is a functional layer in the NR, LTE, UMTS and GSM wireless tele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IP Multimedia Subsystem
The IP Multimedia Subsystem or IP Multimedia Core Network Subsystem (IMS) is a standardised architectural framework for delivering IP multimedia services. Historically, mobile phones have provided voice call services over a circuit-switched-style network, rather than strictly over an IP packet-switched network. Alternative methods of delivering voice (VoIP) or other multimedia services have become available on smartphones, but they have not become standardized across the industry. IMS is an architectural framework that provides such standardization. IMS was originally designed by the wireless standards body 3rd Generation Partnership Project (3GPP), as a part of the vision for evolving mobile networks beyond GSM. Its original formulation (3GPP Rel-5) represented an approach for delivering Internet services over GPRS. This vision was later updated by 3GPP, 3GPP2 and ETSI TISPAN by requiring support of networks other than GPRS, such as Wireless LAN, CDMA2000 and fixed lines. IM ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]