Q Sharp
   HOME
*





Q Sharp
Q# (pronounced as ''Q sharp'') is a domain-specific programming language used for expressing quantum algorithms. It was initially released to the public by Microsoft as part of the Quantum Development Kit. History Historically, Microsoft Research had two teams interested in quantum computing, the QuArC team based in Redmond, directed by Krysta Svore, that explored the construction of quantum circuitry, and Station Q initially located in Santa Barbara and directed by Michael Freedman, that explored topological quantum computing. During a Microsoft Ignite Keynote on September 26, 2017, Microsoft announced that they were going to release a new programming language geared specifically towards quantum computers. On December 11, 2017, Microsoft released Q# as a part of the Quantum Development Kit. At Build 2019, Microsoft announced that it is open-sourcing the Quantum Development Kit, including its Q# compilers and simulators. Bettina Heim currently leads the Q# language developme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microsoft
Microsoft Corporation is an American multinational technology corporation producing computer software, consumer electronics, personal computers, and related services headquartered at the Microsoft Redmond campus located in Redmond, Washington, United States. Its best-known software products are the Windows line of operating systems, the Microsoft Office suite, and the Internet Explorer and Edge web browsers. Its flagship hardware products are the Xbox video game consoles and the Microsoft Surface lineup of touchscreen personal computers. Microsoft ranked No. 21 in the 2020 Fortune 500 rankings of the largest United States corporations by total revenue; it was the world's largest software maker by revenue as of 2019. It is one of the Big Five American information technology companies, alongside Alphabet, Amazon, Apple, and Meta. Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800. It rose to do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Quantum Computing
A topological quantum computer is a theoretical quantum computer proposed by Russian-American physicist Alexei Kitaev in 1997. It employs quasiparticles in two-dimensional systems, called anyons, whose world lines pass around one another to form braids in a three-dimensional spacetime (i.e., one temporal plus two spatial dimensions). These braids form the logic gates that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable. Small, cumulative perturbations can cause quantum states to decohere and introduce errors in the computation, but such small perturbations do not change the braids' topological properties. This is like the effort required to cut a string and reattach the ends to form a different braid, as opposed to a ball (representing an ordinary quantum particle in four-dimensional spacetime) bumping into a wall. While the elements of a topological quantum computer orig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toffoli Gate
In logic circuits, the Toffoli gate (also CCNOT gate), invented by Tommaso Toffoli, is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate, which describes its action. It has 3-bit inputs and outputs; if the first two bits are both set to 1, it inverts the third bit, otherwise all bits stay the same. Background An input-consuming logic gate ''L'' is reversible if it meets the following conditions: ''L''(''x'') = ''y'' is a gate where for any output ''y'', there is a unique input ''x''. The gate ''L'' is reversible if there is a gate ''L''′(''y'') = ''x'' which maps ''y'' to ''x''. From common logic gates, NOT is reversible, as can be seen from its truth table below. The common AND gate is not reversible, because the inputs 00, 01 and 10 are all mapped to the output 0. Reversible gates have been studied since the 1960s. The original motivati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadamard Gate
The Hadamard transform (also known as the Walsh–Hadamard transform, Hadamard–Rademacher–Walsh transform, Walsh transform, or Walsh–Fourier transform) is an example of a generalized class of Fourier transforms. It performs an orthogonal, symmetric, involutive, linear operation on real numbers (or complex, or hypercomplex numbers, although the Hadamard matrices themselves are purely real). The Hadamard transform can be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is in fact equivalent to a multidimensional DFT of size . It decomposes an arbitrary input vector into a superposition of Walsh functions. The transform is named for the French mathematician Jacques Hadamard (), the German-American mathematician Hans Rademacher, and the American mathematician Joseph L. Walsh. Definition The Hadamard transform ''H''''m'' is a 2''m'' × 2''m'' matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2''m'' re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Controlled NOT Gate
In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-''X'' gate'','' controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986. The CNOT can be expressed in the Pauli basis as: : \mbox = e^= e^. Being both unitary and Hermitian, CNOT has the property e^=(\cos \theta)I+(i\sin \theta) U and U =e^=e^, and is involutory. The CNOT gate can be further decomposed as products of rotation operator gates and exactly one two qubit interaction gate, for example : \mbox =e^R_(-\pi/2)R_(-\pi/2)R_(-\pi/2)R_(\pi/2)R_(\pi/2). In general, any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Superposition
Quantum superposition is a fundamental principle of quantum mechanics. It states that, much like waves in classical physics, any two (or more) quantum states can be added together ("superposed") and the result will be another valid quantum state; and conversely, that every quantum state can be represented as a sum of two or more other distinct states. Mathematically, it refers to a property of solutions to the Schrödinger equation; since the Schrödinger equation is linear, any linear combination of solutions will also be a solution(s) . An example of a physically observable manifestation of the wave nature of quantum systems is the interference peaks from an electron beam in a double-slit experiment. The pattern is very similar to the one obtained by diffraction of classical waves. Another example is a quantum logical qubit state, as used in quantum information processing, which is a quantum superposition of the "basis states" , 0 \rangle and , 1 \rangle . Here , 0 \r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Qubit
In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states simultaneously, a property that is fundamental to quantum mechanics and quantum computing. Etymology The coining of the term ''qubit'' is attributed to Benjamin Schumacher. In the acknowledgments of his 1995 paper, Schumacher states that the term ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NET Framework
The .NET Framework (pronounced as "''dot net"'') is a proprietary software framework developed by Microsoft that runs primarily on Microsoft Windows. It was the predominant implementation of the Common Language Infrastructure (CLI) until being superseded by the cross-platform .NET project. It includes a large class library called Framework Class Library (FCL) and provides language interoperability (each language can use code written in other languages) across several programming languages. Programs written for .NET Framework execute in a software environment (in contrast to a computer hardware, hardware environment) named the Common Language Runtime (CLR). The CLR is an process virtual machine, application virtual machine that provides services such as security, memory management, and exception handling. As such, computer code written using .NET Framework is called "managed code". FCL and CLR together constitute the .NET Framework. FCL provides the user interface, data access, d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Simulator
Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Note: This manuscript is a contribution of the US National Institute of Standards and Technology and is not subject to US copyright. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems. A universal quantum simulator is a quantum computer proposed by Yuri Manin in 1980 and Richard Feynman in 1982. Feynman showed that a classical Turing machine would not be able to simulate a quantum effect, while his hypothetical universal quantum computer would be able to mimic needed quantum effect. A quantum system of many particles could be simulated by a quantum computer using a number of quantum bits similar to the number of particles in the original system. This has been extende ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Visual Studio
Visual Studio is an integrated development environment (IDE) from Microsoft. It is used to develop computer programs including web site, websites, web apps, web services and mobile apps. Visual Studio uses Microsoft software development platforms such as Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and Microsoft Silverlight. It can produce both machine code, native code and managed code. Visual Studio includes a code editor supporting IntelliSense (the code completion component) as well as code refactoring. The integrated debugger works both as a source-level debugger and a machine-level debugger. Other built-in tools include a Profiling (computer programming), code profiler, designer for building GUI applications, web designer, class (computing), class designer, and database schema designer. It accepts plug-ins that expand the functionality at almost every level—including adding support for source control systems (like Subversion (software), Subv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bettina Heim
Bettina Heim (born 2 July 1989) was a Swiss competitive figure skater who now leads leads the language design team for Microsoft's Q# programming language. Figure skating career She was the 2011 Swiss national champion, and competed at two World Junior Championships and two World Championships. Programs Competitive highlights Quantum physics and Q# Heim completed her master's degree in quantum physics at ETH Zurich (colloquially) , former_name = eidgenössische polytechnische Schule , image = ETHZ.JPG , image_size = , established = , type = Public , budget = CHF 1.896 billion (2021) , rector = Günther Dissertori , president = Joël Mesot , ac ..., advised by Matthias Troyer. References External links * 1989 births Living people Swiss female single skaters People from Appenzell Ausserrhoden Competitors at the 2011 Winter Universiade {{Switzerland-figure-skater-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]