Quantization Commutes With Reduction
In mathematics, more specifically in the context of geometric quantization, quantization commutes with reduction states that the space of global sections of a line bundle ''L'' satisfying the quantization condition on the symplectic quotient of a compact symplectic manifold is the space of invariant sections of ''L''. This was conjectured in 1980s by Guillemin and Sternberg and was proven in 1990s by Meinrenken (the second paper used symplectic cut In mathematics, specifically in symplectic geometry, the symplectic cut is a geometric modification on symplectic manifolds. Its effect is to decompose a given manifold into two pieces. There is an inverse operation, the symplectic sum, that glues ...) as well as Tian and Zhang. For the formulation due to Teleman, see C. Woodward's notes. See also * Geometric invariant theory Notes References * *. *. *. * {{geometry-stub Mathematical quantization ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Quantization
In mathematical physics, geometric quantization is a mathematical approach to defining a quantum theory corresponding to a given classical theory. It attempts to carry out quantization, for which there is in general no exact recipe, in such a way that certain analogies between the classical theory and the quantum theory remain manifest. For example, the similarity between the Heisenberg equation in the Heisenberg picture of quantum mechanics and the Hamilton equation in classical physics should be built in. Origins One of the earliest attempts at a natural quantization was Weyl quantization, proposed by Hermann Weyl in 1927. Here, an attempt is made to associate a quantum-mechanical observable (a self-adjoint operator on a Hilbert space) with a real-valued function on classical phase space. The position and momentum in this phase space are mapped to the generators of the Heisenberg group, and the Hilbert space appears as a group representation of the Heisenberg group. In 1946, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Curvature Form
In differential geometry, the curvature form describes curvature of a connection on a principal bundle. The Riemann curvature tensor in Riemannian geometry can be considered as a special case. Definition Let ''G'' be a Lie group with Lie algebra \mathfrak g, and ''P'' → ''B'' be a principal ''G''-bundle. Let ω be an Ehresmann connection on ''P'' (which is a \mathfrak g-valued one-form on ''P''). Then the curvature form is the \mathfrak g-valued 2-form on ''P'' defined by :\Omega=d\omega + omega \wedge \omega= D \omega. (In another convention, 1/2 does not appear.) Here d stands for exterior derivative, cdot \wedge \cdot/math> is defined in the article " Lie algebra-valued form" and ''D'' denotes the exterior covariant derivative. In other terms, :\,\Omega(X, Y)= d\omega(X,Y) + omega(X),\omega(Y)/math> where ''X'', ''Y'' are tangent vectors to ''P''. There is also another expression for Ω: if ''X'', ''Y'' are horizontal vector fields on ''P'', thenProof: \sigm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Quotient
In mathematics, specifically in symplectic geometry, the momentum map (or, by false etymology, moment map) is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums. Formal definition Let ''M'' be a manifold with symplectic form ω. Suppose that a Lie group ''G'' acts on ''M'' via symplectomorphisms (that is, the action of each ''g'' in ''G'' preserves ω). Let \mathfrak be the Lie algebra of ''G'', \mathfrak^* its dual, and :\langle, \rangle : \mathfrak^* \times \mathfrak \to \mathbf the pairing between the two. Any ξ in \mathfrak induces a vector field ρ(ξ) on ''M'' describing the infinitesimal action of ξ. To be precise, at a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. Motivation Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Section (fiber Bundle)
In the mathematical field of topology, a section (or cross section) of a fiber bundle E is a continuous right inverse of the projection function \pi. In other words, if E is a fiber bundle over a base space, B: : \pi \colon E \to B then a section of that fiber bundle is a continuous map, : \sigma \colon B \to E such that : \pi(\sigma(x)) = x for all x \in B . A section is an abstract characterization of what it means to be a graph. The graph of a function g\colon B \to Y can be identified with a function taking its values in the Cartesian product E = B \times Y , of B and Y : :\sigma\colon B\to E, \quad \sigma(x) = (x,g(x)) \in E. Let \pi\colon E \to B be the projection onto the first factor: \pi(x,y) = x . Then a graph is any function \sigma for which \pi(\sigma(x)) = x . The language of fibre bundles allows this notion of a section to be generalized to the case when E is not necessarily a Cartesian product. If \pi\colon E \to B is a fibre bundle, then a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Cut
In mathematics, specifically in symplectic geometry, the symplectic cut is a geometric modification on symplectic manifolds. Its effect is to decompose a given manifold into two pieces. There is an inverse operation, the symplectic sum, that glues two manifolds together into one. The symplectic cut can also be viewed as a generalization of symplectic blow up. The cut was introduced in 1995 by Eugene Lerman, who used it to study the symplectic quotient and other operations on manifolds. Topological description Let (X, \omega) be any symplectic manifold and :\mu : X \to \mathbb a Hamiltonian on X. Let \epsilon be any regular value of \mu, so that the level set \mu^(\epsilon) is a smooth manifold. Assume furthermore that \mu^(\epsilon) is fibered in circles, each of which is an integral curve of the induced Hamiltonian vector field. Under these assumptions, \mu^([\epsilon, \infty)) is a manifold with boundary \mu^(\epsilon), and one can form a manifold :\overline_ by collaps ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Invariant Theory
In mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory. Geometric invariant theory studies an action of a group on an algebraic variety (or scheme) and provides techniques for forming the 'quotient' of by as a scheme with reasonable properties. One motivation was to construct moduli spaces in algebraic geometry as quotients of schemes parametrizing marked objects. In the 1970s and 1980s the theory developed interactions with symplectic geometry and equivariant topology, and was used to construct moduli spaces of objects in differential geometry, such as instantons and monopoles. Background Invariant theory is concerned with a group action of a group on an algebraic variety (or a scheme) . Classical invariant theory addresses the situation when is a vecto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost Jean-Benoît Bost (born 27 July 1961, in Neuilly-sur-Seine) is a French mathematician. Early life and education In 1977, Bost graduated from the Lycée Louis-le-Grand and finished first in the Concours général, the national competition for the ... ( University of Paris-Sud). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in: * [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |