HOME
*





Quadratic Pair
In mathematical finite group theory, a quadratic pair for the odd prime ''p'', introduced by , is a finite group ''G'' together with a quadratic module, a faithful representation ''M'' on a vector space over the finite field with ''p'' elements such that ''G'' is generated by elements with minimal polynomial (''x'' − 1)2. Thompson classified the quadratic pairs for ''p'' ≥ 5. classified the quadratic pairs for ''p'' = 3. With a few exceptions, especially for ''p'' = 3, groups with a quadratic pair for the prime ''p'' tend to be more or less groups of Lie type in characteristic ''p''. See also * p-stable group In Group_theory#Finite_group_theory, finite group theory, a ''p''-stable group for an parity (mathematics), odd prime number, prime ''p'' is a finite group satisfying a technical condition introduced by in order to extend Thompson's uniqueness r ... References * *{{Citation , last1=Thompson , first1=John G. , autho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faithful Representation
In mathematics, especially in an area of abstract algebra known as representation theory, a faithful representation ρ of a group on a vector space is a linear representation in which different elements of are represented by distinct linear mappings . In more abstract language, this means that the group homomorphism :\rho: G\to GL(V) is injective (or one-to-one). ''Caveat:'' While representations of over a field are ''de facto'' the same as -modules (with denoting the group algebra of the group ), a faithful representation of is not necessarily a faithful module for the group algebra. In fact each faithful -module is a faithful representation of , but the converse does not hold. Consider for example the natural representation of the symmetric group in dimensions by permutation matrices, which is certainly faithful. Here the order of the group is while the matrices form a vector space of dimension . As soon as is at least 4, dimension counting means that some linear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Polynomial (linear Algebra)
In linear algebra, the minimal polynomial of an matrix over a field is the monic polynomial over of least degree such that . Any other polynomial with is a (polynomial) multiple of . The following three statements are equivalent: # is a root of , # is a root of the characteristic polynomial of , # is an eigenvalue of matrix . The multiplicity of a root of is the largest power such that ''strictly'' contains . In other words, increasing the exponent up to will give ever larger kernels, but further increasing the exponent beyond will just give the same kernel. If the field is not algebraically closed, then the minimal and characteristic polynomials need not factor according to their roots (in ) alone, in other words they may have irreducible polynomial factors of degree greater than . For irreducible polynomials one has similar equivalences: # divides , # divides , # the kernel of has dimension at least . # the kernel of has dimension at least . Like the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Groups Of Lie Type
In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase ''group of Lie type'' does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups. The name "groups of Lie type" is due to the close relationship with the (infinite) Lie groups, since a compact Lie group may be viewed as the rational points of a reductive linear algebraic group over the field of real numbers. and are standard references for groups of Lie type. Classical groups An initial approach to this question was the definition and detailed study of the so-called ''classical groups'' over finite and other fields by . These groups were studied by L. E. Dickson ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-stable Group
In finite group theory, a ''p''-stable group for an odd prime ''p'' is a finite group satisfying a technical condition introduced by in order to extend Thompson's uniqueness results in the odd order theorem to groups with dihedral Sylow 2-subgroups. Definitions There are several equivalent definitions of a ''p''-stable group. ;First definition. We give definition of a ''p''-stable group in two parts. The definition used here comes from . 1. Let ''p'' be an odd prime and ''G'' be a finite group with a nontrivial ''p''-core O_p(G). Then ''G'' is ''p''-stable if it satisfies the following condition: Let ''P'' be an arbitrary ''p''-subgroup of ''G'' such that O_(G) is a normal subgroup of ''G''. Suppose that x \in N_G(P) and \bar x is the coset of C_G(P) containing ''x''. If ,x,x1, then \overline\in O_n(N_G(P)/C_G(P)). Now, define \mathcal_p(G) as the set of all ''p''-subgroups of ''G'' maximal with respect to the property that O_p(M)\not= 1. 2. Let ''G'' be a finite group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier. ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen ( RWTH) is Editor of the computational algebra section. See also *Susan Montgomery M. Susan Montgomery (born 2 April 1943 in Lansing, MI) is a distinguished American mathematician whose current research interests concern noncommutative algebras: in parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]