Pseudospark Switch
   HOME
*



picture info

Pseudospark Switch
The pseudospark switch a gas-filled tube capable of high speed switching. Pseudospark switches are functionally similar to triggered spark gaps. Advantages of pseudospark switches include the ability to carry reverse currents (up to 100%), low pulse, high lifetime, and a high current rise of about 1012 A/sec. In addition, since the cathode is not heated prior to switching, the standby power is approximately one order of magnitude lower than in thyratrons. However, pseudospark switches have undesired plasma phenomena at low peak currents. Issues such as current quenching, chopping, and impedance fluctuations occur at currents less than 2–3 kA while at very high peak currents (20–30 kA) a transition to a metal vapor arc occurs which leads to erosion of the electrodes. Construction A pseudospark switch's electrodes (cathode and anode) have central holes approximately 3 to 5 mm in diameter. Behind the cathode and anode lie a hollow cathode and hollow anode, respe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gas-filled Tube
A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices. The voltage required to initiate and sustain discharge is dependent on the pressure and composition of the fill gas and geometry of the tube. Although the envelope is typically glass, power tubes often use ceramics, and military tubes often use glass-lined metal. Both hot cathode and cold cath ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tantalum
Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is highly corrosion-resistant. It is part of the refractory metals group, which are widely used as components of strong high-melting-point alloys. It is a group 5 element, along with vanadium and niobium, and it always occurs in geologic sources together with the chemically similar niobium, mainly in the mineral groups tantalite, columbite and coltan. The chemical inertness and very high melting point of tantalum make it valuable for laboratory and industrial equipment such as reaction vessels and vacuum furnaces. It is used in tantalum capacitors for electronic equipment such as computers. Tantalum is considered a technology-critical element by the European Commission. History Tantalum was discovered in Sweden in 1802 by Anders Ekeberg, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Switching Tubes
Switching may refer to: Computing and technology * Switching, functions performed by a switch: ** Electronic switching ** Packet switching, a digital networking communications methodology *** LAN switching, packet switching on Local Area Networks ** Telephone switching, the activity performed by a telephone exchange (telephone switching machine) * Switching, a synonym for shunting in rail transport Other uses * Switching (ecology), a pattern of predation describing predators' selection of food based on its abundance * ''Switching'' (film), a 2003 Danish interactive film * Switching (pickleball), when doubles partners switch sides of their court * Code-switching, of languages * Immunoglobulin class switching, an immunological mechanism that changes the type of antibody produced by B cells * Task switching (psychology) Task switching, or set-shifting, is an executive function that involves the ability to ''unconsciously'' shift attention between one task and another. In cont ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thyratron
A thyratron is a type of gas-filled tube used as a high-power electrical switch and controlled rectifier. Thyratrons can handle much greater currents than similar hard-vacuum tubes. Electron multiplication occurs when the gas becomes ionized, producing a phenomenon known as Townsend discharge. Gases used include mercury vapor, xenon, neon, and (in special high-voltage applications or applications requiring very short switching times) hydrogen. Unlike a vacuum tube (valve), a thyratron cannot be used to amplify signals linearly. In the 1920s, thyratrons were derived from early vacuum tubes such as the UV-200, which contained a small amount of argon gas to increase its sensitivity as a radio signal detector, and the German LRS relay tube, which also contained argon gas. Gas rectifiers, which predated vacuum tubes, such as the argon-filled General Electric " Tungar bulb" and the Cooper-Hewitt mercury-pool rectifier, also provided an influence. Irving Langmuir and G. S. Meikle of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IGBT
An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily used as an electronic switch, which, as it was developed, came to combine high efficiency and fast switching. It consists of four alternating layers (P–N–P–N) that are controlled by a metal–oxide–semiconductor (MOS) gate structure. Although the structure of the IGBT is topologically the same as a thyristor with a "MOS" gate ( MOS-gate thyristor), the thyristor action is completely suppressed, and only the transistor action is permitted in the entire device operation range. It is used in switching power supplies in high-power applications: variable-frequency drives (VFDs), electric cars, trains, variable-speed refrigerators, lamp ballasts, arc-welding machines, induction hobs, and air conditioners. Since it is designed to turn on and off rapidly, the IGBT can synthesize complex waveforms with pulse-width modulation and low-pass filters, so it is also used in switching a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Krytron
The krytron is a cold-cathode gas-filled tube intended for use as a very high-speed switch, somewhat similar to the thyratron. It consists of a sealed glass tube with four electrodes. A small triggering pulse on the control grid, grid electrode switches the tube on, allowing a large current to flow between the cathode and anode electrodes. The vacuum version is called a vacuum krytron, or sprytron. The krytron was one of the earliest developments of the EG&G Corporation. Description Unlike most other gas switching tubes, the krytron conducts by means of an electric arc, arc discharge, to handle very high voltages and currents (reaching several kilovolts and several kiloamperes), rather than the low-current electric glow discharge, glow discharge used in other thyratrons. The krytron is a development of the Spark gap, triggered spark gaps and thyratrons originally developed for radar transmitters during World War II. The gas used in krytrons is hydrogen;
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ignitron
An ignitron is a type of gas-filled tube used as a controlled rectifier and dating from the 1930s. Invented by Joseph Slepian while employed by Westinghouse, Westinghouse was the original manufacturer and owned trademark rights to the name "Ignitron". Ignitrons are closely related to mercury-arc valves but differ in the way the arc is ignited. They function similarly to thyratrons; a triggering pulse to the igniter electrode turns the device "on", allowing a high current to flow between the cathode and anode electrodes. After it is turned on, the current through the anode must be reduced to zero to restore the device to its nonconducting state. They are used to switch high currents in heavy industrial applications. Construction and operation An ignitron is usually a large steel container with a pool of mercury in the bottom that acts as a cathode during operation. A large graphite or refractory metal cylinder, held above the pool by an insulated electrical connection, serves as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudospark Switch
The pseudospark switch a gas-filled tube capable of high speed switching. Pseudospark switches are functionally similar to triggered spark gaps. Advantages of pseudospark switches include the ability to carry reverse currents (up to 100%), low pulse, high lifetime, and a high current rise of about 1012 A/sec. In addition, since the cathode is not heated prior to switching, the standby power is approximately one order of magnitude lower than in thyratrons. However, pseudospark switches have undesired plasma phenomena at low peak currents. Issues such as current quenching, chopping, and impedance fluctuations occur at currents less than 2–3 kA while at very high peak currents (20–30 kA) a transition to a metal vapor arc occurs which leads to erosion of the electrodes. Construction A pseudospark switch's electrodes (cathode and anode) have central holes approximately 3 to 5 mm in diameter. Behind the cathode and anode lie a hollow cathode and hollow anode, respe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma () 1, where \nu_ is the electron gyrofrequency and \nu_ is the electron collision rate. It is often the case that the electrons are magnetized while the ions are not. Magnetized plasmas are ''anisotropic'', meaning that their properties in the direction parallel to the magnetic field are different from those perpendicular to it. While electric fields in plasmas are usually small due to the plasma high conductivity, the electric field associated with a plasma moving with velocity \mathbf in the magnetic field \mathbf is given by the usual Lorentz force, Lorentz formula \mathbf = -\mathbf\times\mathbf, and is not affected by Debye shielding. Mathematical descriptions To completely describe the state of a plasma, all of the particle locations and velocities that describe the electromagnetic field in the plasma region would need to be written down. However, it is generally not practical or necessary to keep track of all the particles in a plasma. Therefore, plasma physicist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electron Avalanche
An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them (impact ionization). This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an Electrical resistivity and conductivity, electrically conductive plasma (physics), plasma. The avalanche effect was discovered by John Sealy Townsend in his work between 1897 and 1901, and is also known as the Townsend discharge. Electron avalanches are essential to the dielectric breakdown process within gases. The process can culminate in corona discharges, streamer discharge , streamers, leader (spark), leaders, or in a electric spark, spark or continuous electric arc, arc that completely bridges the gap between the electrical conductors that a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Boron Carbide
Boron carbide (chemical formula approximately B4C) is an extremely hard boron–carbon ceramic, a covalent material used in tank armor, bulletproof vests, engine sabotage powders, as well as numerous industrial applications. With a Vickers hardness of >30 GPa, it is one of the hardest known materials, behind cubic boron nitride and diamond. History Boron carbide was discovered in the 19th century as a by-product of reactions involving metal borides, but its chemical formula was unknown. It was not until the 1930s that the chemical composition was estimated as B4C. Controversy remained as to whether or not the material had this exact 4:1 stoichiometry, as, in practice the material is always slightly carbon-deficient with regard to this formula, and X-ray crystallography shows that its structure is highly complex, with a mixture of C-B-C chains and B12 icosahedra. These features argued against a very simple exact B4C empirical formula. Because of the B12 structural unit, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]