Propositional Proof System
   HOME
*





Propositional Proof System
In propositional calculus and proof complexity a propositional proof system (pps), also called a Cook–Reckhow propositional proof system, is a system for proving classical propositional tautologies. Mathematical definition Formally a pps is a polynomial-time function ''P'' whose range is the set of all propositional tautologies (denoted TAUT). If ''A'' is a formula, then any ''x'' such that ''P''(''x'') = ''A'' is called a ''P''-proof of ''A''. The condition defining pps can be broken up as follows: * Completeness: every propositional tautology has a ''P''-proof, * Soundness: if a propositional formula has a ''P''-proof then it is a tautology, * Efficiency: ''P'' runs in polynomial time. In general, a proof system for a language ''L'' is a polynomial-time function whose range is ''L''. Thus, a propositional proof system is a proof system for TAUT. Sometimes the following alternative definition is considered: a pps is given as a proof-verification algorithm ''P''(''A'',''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Propositional Calculus
Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or Quantifier (logic), quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Explanation Logical connectives are found in natural languages. In English for example, some examples are "and" (logical conjunction, conjunction), "or" (lo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CoNP
In computational complexity theory, co-NP is a complexity class. A decision problem X is a member of co-NP if and only if its complement (complexity), complement is in the complexity class NP (complexity), NP. The class can be defined as follows: a decision problem is in co-NP precisely if only ''no''-instances have a polynomial-length "Certificate (complexity), certificate" and there is a polynomial-time algorithm that can be used to verify any purported certificate. That is, co-NP is the set of decision problems where there exists a polynomial ''p(n)'' and a polynomial-time bounded Turing machine ''M'' such that for every instance ''x'', ''x'' is a ''no''-instance if and only if: for some possible certificate ''c'' of length bounded by ''p(n)'', the Turing machine ''M'' accepts the pair (''x'', ''c''). Complementary Problems While an NP problem asks whether a given instance is a ''yes''-instance, its ''complement'' asks whether an instance is a ''no''-instance, which means the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semantic Tableau
In proof theory, the semantic tableau (; plural: tableaux, also called truth tree) is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. An analytic tableau is a tree structure computed for a logical formula, having at each node a subformula of the original formula to be proved or refuted. Computation constructs this tree and uses it to prove or refute the whole formula. The tableau method can also determine the satisfiability of finite sets of formulas of various logics. It is the most popular proof procedure for modal logics (Girle 2000). Introduction For refutation tableaux, the objective is to show that the negation of a formula cannot be satisfied. There are rules for handling each of the usual connectives, starting with the main connective. In many cases, applying these rules causes the subtableau to divide into two. Quantifiers are instantiated. If any branch of a tableau leads to an evident contradictio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cutting-plane Method
In mathematical optimization, the cutting-plane method is any of a variety of optimization methods that iteratively refine a feasible set or objective function by means of linear inequalities, termed ''cuts''. Such procedures are commonly used to find integer solutions to mixed integer linear programming (MILP) problems, as well as to solve general, not necessarily differentiable convex optimization problems. The use of cutting planes to solve MILP was introduced by Ralph E. Gomory. Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible region does not contain a line), one can always find an extreme point or a corner point that is optimal. The obtained optimum is tested for being an integer solution. If it is not, there is guaranteed to exist a linear inequality that ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial Calculus
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Extended Frege System
Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * Extension (semantics), the set of things to which a property applies * Extension by definitions * Extensional definition, a definition that enumerates every individual a term applies to * Extensionality Other uses * Extension of a polyhedron, in geometry * Exterior algebra, Grassmann's theory of extension, in geometry * Homotopy extension property, in topology * Kolmogorov extension theorem, in probability theory * Linear extension, in order theory * Sheaf extension, in algebraic geometry * Tietze extension theorem, in topology * Whitney extension theorem, in differential geometry * Group extension, in abstract algebra and homological algebra Music * Extension (music), notes that fit outside the standard range * ''Extended'' (S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frege System
In proof complexity, a Frege system is a propositional proof system whose proofs are sequences of formulas derived using a finite set of sound and implicationally complete inference rules. Frege systems (more often known as Hilbert systems in general proof theory) are named after Gottlob Frege. Formal definition Let ''K'' be a finite functionally complete set of Boolean connectives, and consider propositional formulas built from variables ''p''0, ''p''1, ''p''2, ... using ''K''-connectives. A Frege rule is an inference rule of the form :r=\fracB, where ''B''1, ..., ''Bn'', ''B'' are formulas. If ''R'' is a finite set of Frege rules, then ''F'' = (''K'',''R'') defines a derivation system in the following way. If ''X'' is a set of formulas, and ''A'' is a formula, then an ''F''-derivation of ''A'' from axioms ''X'' is a sequence of formulas ''A''1, ..., ''Am'' such that ''Am'' = ''A'', and every ''Ak'' is a member of ''X'', or it is derived from some of the formulas ''Ai'', ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequent Calculus
In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology (called a sequent by Gerhard Gentzen) instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies. Sequent calculus is one of several extant styles of proof calculus for expressing line-by-line logical arguments. * Hilbert style. Every line is an unconditional tautology (or theorem). * Gentzen s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Deduction
In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning. Motivation Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of Hilbert, Frege, and Russell (see, e.g., Hilbert system). Such axiomatizations were most famously used by Russell and Whitehead in their mathematical treatise ''Principia Mathematica''. Spurred on by a series of seminars in Poland in 1926 by Łukasiewicz that advocated a more natural treatment of logic, Jaśkowski made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935. His proposals led to diffe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DPLL Algorithm
In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem. It was introduced in 1961 by Martin Davis, George Logemann and Donald W. Loveland and is a refinement of the earlier Davis–Putnam algorithm, which is a resolution-based procedure developed by Davis and Hilary Putnam in 1960. Especially in older publications, the Davis–Logemann–Loveland algorithm is often referred to as the "Davis–Putnam method" or the "DP algorithm". Other common names that maintain the distinction are DLL and DPLL. Implementations and applications The SAT problem is important both from theoretical and practical points of view. In complexity theory it was the first problem proved to be NP-complete, and can appear in a broad variety of applications such as ''model checking'', automate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]