Proper Generalized Decomposition
   HOME
*





Proper Generalized Decomposition
The proper generalized decomposition (PGD) is an iterative numerical method for solving boundary value problems (BVPs), that is, partial differential equations constrained by a set of boundary conditions, such as the Poisson's equation or the Laplace's equation. The PGD algorithm computes an approximation of the solution of the BVP by successive enrichment. This means that, in each iteration, a new component (or ''mode'') is computed and added to the approximation. In principle, the more modes obtained, the closer the approximation is to its theoretical solution. Unlike POD principal components, PGD modes are not necessarily orthogonal to each other. By selecting only the most relevant PGD modes, a reduced order model of the solution is obtained. Because of this, PGD is considered a dimensionality reduction algorithm. Description The proper generalized decomposition is a method characterized by # a variational formulation of the problem, # a discretization of the domain in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iterative Method
In computational mathematics, an iterative method is a Algorithm, mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the previous ones. A specific implementation of an iterative method, including the Algorithm#Termination, termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common. In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations A\mathbf=\mathbf by Gaussian elimination). Iterative methods are often the only cho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Element Method
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems). To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Modeling
A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in the natural sciences (such as physics, biology, earth science, chemistry) and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science). The use of mathematical models to solve problems in business or military operations is a large part of the field of operations research. Mathematical models are also used in music, linguistics, and philosophy (for example, intensively in analytic philosophy). A model may help to explain a system and to study the effects of different components, and to make predictions about behavior. Elements of a mathematical model Mathematical models can take many forms, including dynamical systems, statistical m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vademecum
A handbook is a type of reference work, or other collection of instructions, that is intended to provide ready reference. The term originally applied to a small or portable book containing information useful for its owner, but the ''Oxford English Dictionary'' defines the current sense as "any book ... giving information such as facts on a particular subject, guidance in some art or occupation, instructions for operating a machine, or information for tourists."Oxford English Dictionary Online
accessed 23 March 2017. A handbook is sometimes referred to as a '''' (

Curse Of Dimensionality
The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience. The expression was coined by Richard E. Bellman when considering problems in dynamic programming. Dimensionally cursed phenomena occur in domains such as numerical analysis, sampling, combinatorics, machine learning, data mining and databases. The common theme of these problems is that when the dimensionality increases, the volume of the space increases so fast that the available data become sparse. In order to obtain a reliable result, the amount of data needed often grows exponentially with the dimensionality. Also, organizing and searching data often relies on detecting areas where objects form groups with similar properties; in high dimensional data, however, all objects appear to be sparse and dissimilar in many ways, which prevents co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Weak Formulation
Weak formulations are important tools for the analysis of mathematical equations that permit the transfer of concepts of linear algebra to solve problems in other fields such as partial differential equations. In a weak formulation, equations or conditions are no longer required to hold absolutely (and this is not even well defined) and has instead weak solutions only with respect to certain "test vectors" or "test functions". In a strong formulation, the solution space is constructed such that these equations or conditions are already fulfilled. The Lax–Milgram theorem, named after Peter Lax and Arthur Milgram who proved it in 1954, provides weak formulations for certain systems on Hilbert spaces. General concept Let V be a Banach space, V' its dual space, A\colon V \to V', and f \in V'. Finding the solution u \in V of the equation Au = f is equivalent to finding u\in V such that, for all v \in V, uv) = f(v). Here, v is called a test vector or test function. To bring this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fixed Point Algorithm
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function f defined on the real numbers with real values and given a point x_0 in the domain of f, the fixed-point iteration is :x_=f(x_n), \, n=0, 1, 2, \dots which gives rise to the sequence x_0, x_1, x_2, \dots of iterated function applications x_0, f(x_0), f(f(x_0)), \dots which is hoped to converge to a point x_. If f is continuous, then one can prove that the obtained x_ is a fixed point of f, i.e., :f(x_)=x_ . More generally, the function f can be defined on any metric space with values in that same space. Examples * A first simple and useful example is the Babylonian method for computing the square root of ''a''>0, which consists in taking f(x)=\frac 12\left(\frac ax + x\right), i.e. the mean value of ''x'' and ''a/x'', to approach the limit x = \sqrt a (from whatever starting point x_0 \gg 0 ). This is a special case of Newton's method quoted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bubnov-Galerkin Method
In mathematics, in the area of numerical analysis, Galerkin methods, named after the Russian mathematician Boris Galerkin, convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions. Often when referring to a Galerkin method, one also gives the name along with typical assumptions and approximation methods used: * Ritz–Galerkin method (after Walther Ritz) typically assumes symmetric and positive definite bilinear form in the weak formulation, where the differential equation for a physical system can be formulated via minimization of a quadratic function representing the system energy and the approximate solution is a linear combination of the given set of the basis functions.A. Ern, J.L. Guermond, ''Theory and practice of finite elements'', Springer, 2004, * Bubnov–Galerkin method (after Ivan Bubnov) does not require the bilin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Greedy Algorithm
A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to such a complex problem typically requires unreasonably many steps. In mathematical optimization, greedy algorithms optimally solve combinatorial problems having the properties of matroids and give constant-factor approximations to optimization problems with the submodular structure. Specifics Greedy algorith ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domain Of A Function
In mathematics, the domain of a function is the set of inputs accepted by the function. It is sometimes denoted by \operatorname(f) or \operatornamef, where is the function. More precisely, given a function f\colon X\to Y, the domain of is . Note that in modern mathematical language, the domain is part of the definition of a function rather than a property of it. In the special case that and are both subsets of \R, the function can be graphed in the Cartesian coordinate system. In this case, the domain is represented on the -axis of the graph, as the projection of the graph of the function onto the -axis. For a function f\colon X\to Y, the set is called the codomain, and the set of values attained by the function (which is a subset of ) is called its range or image. Any function can be restricted to a subset of its domain. The restriction of f \colon X \to Y to A, where A\subseteq X, is written as \left. f \_A \colon A \to Y. Natural domain If a real function is giv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Method
In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm. Mathematical definition Let F(x,y)=0 be a well-posed problem, i.e. F:X \times Y \rightarrow \mathbb is a real or complex functional relationship, defined on the cross-product of an input data set X and an output data set Y, such that exists a locally lipschitz function g:X \rightarrow Y called resolvent, which has the property that for every root (x,y) of F, y=g(x). We define numerical method for the approximation of F(x,y)=0, the sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ... of problems : \left \_ = \left \_, with F_n:X_n \times ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]