Preparata Code
   HOME





Preparata Code
In coding theory, the Preparata codes form a class of non-linear double-error-correcting codes. They are named after Franco P. Preparata who first described them in 1968. Although non-linear over GF(2) the Preparata codes are linear over Z4 with the Lee distance. Construction Let ''m'' be an odd number, and n = 2^m-1. We first describe the extended Preparata code of length 2n+2 = 2^: the Preparata code is then derived by deleting one position. The words of the extended code are regarded as pairs (''X'', ''Y'') of 2''m''-tuples, each corresponding to subsets of the finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ... GF(2''m'') in some fixed way. The extended code contains the words (''X'', ''Y'') satisfying three conditions # ''X'', ''Y'' each have even we ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coding Theory
Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and computer data storage, data storage. Codes are studied by various scientific disciplines—such as information theory, electrical engineering, mathematics, linguistics, and computer science—for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data. There are four types of coding: # Data compression (or ''source coding'') # Error detection and correction, Error control (or ''channel coding'') # Cryptography, Cryptographic coding # Line code, Line coding Data compression attempts to remove unwanted redundancy from the data from a source in order to transmit it more efficiently. For example, DEFLATE data compression makes files small ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Error Detection And Correction
In information theory and coding theory with applications in computer science and telecommunications, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases. Definitions ''Error detection'' is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver. ''Error correction'' is the detection of errors and reconstruction of the original, error-free data. History In classical antiquity, copyists of the Hebrew Bible were paid for their work according to the number of stichs (lines of verse). As the prose books of the Bible were hardly ever w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Franco P
Franco may refer to: Name * Franco (name) * Francisco Franco (1892–1975), Spanish general and dictator of Spain from 1939 to 1975 * Franco Luambo (1938–1989), Congolese musician, the "Grand Maître" * Franco of Cologne (mid to late 13th century), German music theorist Prefix * Franco, a prefix used when referring to France, a country ** Franco, a prefix used when referring to French people and their diaspora, e.g. Franco-Americans, Franco-Mauritians * Franco, a prefix used when referring to Franks, a West Germanic tribe Places * Franco (Mirandela), a village in Portugal * El Franco, a municipality of Asturias in Spain * Presidente Franco District, in Paraguay * Franco, Virginia, an unincorporated community, in the United States Other uses * Franco (band), Filipino band * Franco (''General Hospital''), a fictional character on the American soap opera ''General Hospital'' * Franco, the Luccan franc, a 19th-century currency of Lucca, Italy * ''Franco, Ciccio e il pir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GF(2)
(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field with two elements. is the Field (mathematics), field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively and , as usual. The elements of may be identified with the two possible values of a bit and to the Boolean domain, Boolean values ''true'' and ''false''. It follows that is fundamental and ubiquitous in computer science and its mathematical logic, logical foundations. Definition GF(2) is the unique field with two elements with its additive identity, additive and multiplicative identity, multiplicative identities respectively denoted and . Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: If the elements of GF(2) are seen as Boolean values, then the addition is the same as that of the logical XOR operation. Since each element equals its opposite (m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lee Distance
In coding theory, the Lee distance is a distance between two strings x_1 x_2 \dots x_n and y_1 y_2 \dots y_n of equal length ''n'' over the ''q''-ary alphabet of size . It is a metric defined as \sum_^n \min(, x_i - y_i, ,\, q - , x_i - y_i, ). If or the Lee distance coincides with the Hamming distance, because both distances are 0 for two single equal symbols and 1 for two single non-equal symbols. For this is not the case anymore; the Lee distance between single letters can become bigger than 1. However, there exists a Gray isometry (weight-preserving bijection) between \mathbb_4 with the Lee weight and \mathbb_2^2 with the Hamming weight. Considering the alphabet as the additive group Z''q'', the Lee distance between two single letters x and y is the length of shortest path in the Cayley graph (which is circular since the group is cyclic) between them. More generally, the Lee distance between two strings of length is the length of the shortest path between them in the Ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) () is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbach (1997, 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Fields
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a field; this means that multiplication, addition, subtraction and division (excluding divi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]