Premise
   HOME
*





Premise
A premise or premiss is a true or false statement that helps form the body of an argument, which logically leads to a true or false conclusion. A premise makes a declarative statement about its subject matter which enables a reader to either agree or disagree with the premise in question, and in doing so understand the logical assumptions of the argument. If a premise is logically false, then the conclusion, which follows from all of the premises of the argument, must also be false—unless the conclusion is supported by a logically valid argument which the reader agrees with. Therefore, if the reader disagrees with any one of the argument's premises, they have a logical basis to reject the conclusion of the argument. Explanation In logic, an argument requires a set of at least two declarative sentences (or "propositions") known as the "premises" (or "premisses"), along with another declarative sentence (or "proposition"), known as the conclusion. This structure of two prem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rules Of Inference
In the philosophy of logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called ''modus ponens'' takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion. Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises in a topic-neutral way. When used as a countable noun, the term "a logic" refers to a logical formal system that articulates a proof system. Formal logic contrasts with informal logic, which is associated with informal fallacies, critical thinking, and argumentation theory. While there is no general agreement on how formal and informal logic are to be distinguished, one prominent approach associates their difference with whether the studied arguments are expressed in formal or informal languages. Logic plays a central role in multiple fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises together with a conclusion. Premises and conclusions are usually un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Argument
An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectical and the rhetorical perspective. In logic, an argument is usually expressed not in natural language but in a symbolic formal language, and it can be defined as any group of propositions of which one is claimed to follow from the others through deductively valid inferences that preserve truth from the premises to the conclusion. This logical perspective on argument is relevant for scientific fields such as mathematics and computer science. Logic is the study of the forms of reasoning in arguments and the development of standards and criteria to evaluate arguments. Deductive arguments can be valid, and the valid ones can be sound: in a valid argument, premisses necessitate the conclusion, even if one or more of the premises is false ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Arguments
An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectical and the rhetorical perspective. In logic, an argument is usually expressed not in natural language but in a symbolic formal language, and it can be defined as any group of propositions of which one is claimed to follow from the others through deductively valid inferences that preserve truth from the premises to the conclusion. This logical perspective on argument is relevant for scientific fields such as mathematics and computer science. Logic is the study of the forms of reasoning in arguments and the development of standards and criteria to evaluate arguments. Deductive arguments can be valid, and the valid ones can be sound: in a valid argument, premisses necessitate the conclusion, even if one or more of the premises is false an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


False Premise
A false premise is an incorrect proposition that forms the basis of an argument or syllogism. Since the premise (proposition, or assumption) is not correct, the conclusion drawn may be in error. However, the logical validity of an argument is a function of its internal consistency, not the truth value of its premises. For example, consider this syllogism, which involves a false premise: :* If the streets are wet, it has rained recently. (premise) :* The streets are wet. (premise) :* Therefore it has rained recently. (conclusion) This argument is logically valid, but quite demonstrably wrong, because its first premise is false - one could hose down the streets, the local river could have flooded etc. A simple logical analysis will not reveal the error in this argument, since that analysis must accept the truth of the argument's premises. For this reason, an argument based on false premises can be much more difficult to refute, or even discuss, than one featuring a normal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Syllogism
A syllogism ( grc-gre, συλλογισμός, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BCE book '' Prior Analytics''), a syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across. For example, knowing that all men are mortal (major premise) and that Socrates is a man (minor premise), we may validly conclude that Socrates is mortal. Syllogistic arguments are usually represented in a three-line form: All men are mortal. Socrates is a man. Therefore, Socrates is mortal.In antiquity, two rival syllogistic theories existed: Aristotelian syllogism and Stoic syllogism. From the Middle Ages onwards, ''categorical syllogism'' and ''syllogism'' were usually used interchangeably. This a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clause (logic)
In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives. A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term). That is, it is a finite disjunction or conjunction of literals, depending on the context. Clauses are usually written as follows, where the symbols l_i are literals: :l_1 \vee \cdots \vee l_n Empty clauses A clause can be empty (defined from an empty set of literals). The empty clause is denoted by various symbols such as \empty, \bot, or \Box. The truth evaluation of an empty disjunctive clause is always false. This is justified by considering that false is the neutral element of the monoid (\, \vee). The truth evaluation of an empty conjunctive clause is always true. This is related to the concept ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Corresponding Conditional
In logic, the corresponding conditional of an argument (or derivation) is a material conditional whose antecedent is the conjunction of the argument's (or derivation's) premises and whose consequent is the argument's conclusion. An argument is valid if and only if its corresponding conditional is a logical truth. It follows that an argument is valid if and only if the negation of its corresponding conditional is a contradiction. Therefore, the construction of a corresponding conditional provides a useful technique for determining the validity of an argument. Example Consider the argument A: Either it is hot or it is cold It is not hot Therefore it is cold This argument is of the form: Either P or Q Not P Therefore Q or (using standard symbols of propositional calculus): P Q P ____________ Q The corresponding conditional C is: IF ((P or Q) and not P) THEN Q or (using standard symbols): ((P Q) P) Q and the argument A is valid just in case the corresponding condit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conditional (other)
Conditional (if then) may refer to: *Causal conditional, if X then Y, where X is a cause of Y *Conditional probability, the probability of an event A given that another event B has occurred *Conditional proof, in logic: a proof that asserts a conditional, and proves that the antecedent leads to the consequent *Strict conditional, in philosophy, logic, and mathematics *Material conditional, in propositional calculus, or logical calculus in mathematics * Relevance conditional, in relevance logic *Conditional (computer programming), a statement or expression in computer programming languages *A conditional expression in computer programming languages such as ?: *Conditions in a contract Grammar and linguistics *Conditional mood (or conditional tense), a verb form in many languages *Conditional sentence, a sentence type used to refer to hypothetical situations and their consequences **Indicative conditional, a conditional sentence expressing "if A then B" in a natural language **Cou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euclid
Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' treatise, which established the foundations of geometry that largely dominated the field until the early 19th century. His system, now referred to as Euclidean geometry, involved new innovations in combination with a synthesis of theories from earlier Greek mathematicians, including Eudoxus of Cnidus, Hippocrates of Chios, Thales and Theaetetus (mathematician), Theaetetus. With Archimedes and Apollonius of Perga, Euclid is generally considered among the greatest mathematicians of antiquity, and one of the most influential in the history of mathematics. Very little is known of Euclid's life, and most information comes from the philosophers Proclus and Pappus of Alexandria many centuries later. Until the early Renaissance he was often mistaken f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Truth
Truth is the property of being in accord with fact or reality.Merriam-Webster's Online Dictionarytruth 2005 In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs, propositions, and declarative sentences. Truth is usually held to be the opposite of falsehood. The concept of truth is discussed and debated in various contexts, including philosophy, art, theology, and science. Most human activities depend upon the concept, where its nature as a concept is assumed rather than being a subject of discussion; these include most of the sciences, law, journalism, and everyday life. Some philosophers view the concept of truth as basic, and unable to be explained in any terms that are more easily understood than the concept of truth itself. Most commonly, truth is viewed as the correspondence of language or thought to a mind-independent world. This is called the correspondence theory of truth. Various theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symbolic Logic
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory show ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]