HOME
*



picture info

Power Of A Point
In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power \Pi(P) of a point P with respect to a circle c with center O and radius r is defined by : \Pi(P)=, PO, ^2 - r^2. If P is ''outside'' the circle, then \Pi(P)>0, if P is ''on'' the circle, then \Pi(P)=0 and if P is ''inside'' the circle, then \Pi(P)<0. Due to the the number \Pi(P) has the simple geometric meanings shown in the diagram: For a point P outside the circle \Pi(P) is the squared tangential distance , PT, of point P to the circle c. Points with equal power,

picture info

Law Of Cosines
In trigonometry, the law of cosines (also known as the cosine formula, cosine rule, or al-Kashi's theorem) relates the lengths of the sides of a triangle to the cosine of one of its angles. Using notation as in Fig. 1, the law of cosines states :c^2 = a^2 + b^2 - 2ab\cos\gamma, where denotes the angle contained between sides of lengths and and opposite the side of length . For the same figure, the other two relations are analogous: :a^2=b^2+c^2-2bc\cos\alpha, :b^2=a^2+c^2-2ac\cos\beta. The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if the angle is a right angle (of measure 90 degrees, or radians), then , and thus the law of cosines reduces to the Pythagorean theorem: :c^2 = a^2 + b^2. The law of cosines is useful for computing the third side of a triangle when two sides and their enclosed angle are known. History Though the notion of the cosine was not yet developed in his time, Euclid's '' Elements'', dating back to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kreise2-aehnlpunkte-var
Kreis is the German word for circle. Kreis may also refer to: Places * , or circles, various subdivisions roughly equivalent to counties, districts or municipalities ** Districts of Germany (including and ) ** Former districts of Prussia, also known as ** ''Kreise'' of the former Electorate of Saxony *, or Imperial Circles, ceremonial associations of several regional monarchies () and/or imperial cities () in the Holy Roman Empire People * Harold Kreis (born 1959), Canadian-German ice hockey coach * Jason Kreis (born 1972), American soccer player * Melanie Kreis (born 1971), German businesswoman * Wilhelm Kreis (1873–1955), German architect Music and culture *''Der Kreis'', a Swiss gay magazine * ''Kreise'' (album), a 2017 album by Johannes Oerding See also * Krai, an administrative division in Russia * Kraj, an administrative division in Czechia and Slovakia * Okręg, an administrative division in Poland * Okres, an administrative division in Czechia and Slovakia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Similarity (geometry)
In Euclidean geometry, two objects are similar if they have the same shape, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other. For example, all circles are similar to each other, all squares are similar to each other, and all equilateral triangles are similar to each other. On the other hand, ellipses are not all similar to each other, rectangles are not all similar to each other, and isosceles triangles are not all similar to each other. If two angles of a triangle have measures equal to the measures of two angles of another triangle, then the triangles are similar. Correspon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homothety
In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point ''S'' called its ''center'' and a nonzero number ''k'' called its ''ratio'', which sends point X to a point X' by the rule : \overrightarrow=k\overrightarrow for a fixed number k\ne 0. Using position vectors: :\mathbf x'=\mathbf s + k(\mathbf x -\mathbf s). In case of S=O (Origin): :\mathbf x'=k\mathbf x, which is a uniform scaling and shows the meaning of special choices for k: :for k=1 one gets the ''identity'' mapping, :for k=-1 one gets the ''reflection'' at the center, For 1/k one gets the ''inverse'' mapping defined by k. In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if k>0) or reverse (if k<0) the direction of all vectors. Together with the translations, all homotheties of an affine ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vieta's Theorem
In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Basic formulas Any general polynomial of degree ''n'' :P(x) = a_nx^n + a_x^ + \cdots + a_1 x + a_0 (with the coefficients being real or complex numbers and ) has (not necessarily distinct) complex roots by the fundamental theorem of algebra. Vieta's formulas relate the polynomial's coefficients to signed sums of products of the roots as follows: :\begin r_1 + r_2 + \dots + r_ + r_n = -\dfrac \\ (r_1 r_2 + r_1 r_3+\cdots + r_1 r_n) + (r_2r_3 + r_2r_4+\cdots + r_2r_n)+\cdots + r_r_n = \dfrac \\ \quad \vdots \\ r_1 r_2 \dots r_n = (-1)^n \dfrac. \end Vieta's formulas can equivalently be written as : \sum_ \left(\prod_^k r_\right)=(-1)^k\frac for (the indices are sorted in increasing order to ensure each product of roots is used exactly once). Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Vector
In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in \hat (pronounced "v-hat"). The term ''direction vector'', commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere. The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e., :\mathbf = \frac where , u, is the norm (or length) of u. The term ''normalized vector'' is sometimes used as a synonym for ''unit vector''. Unit vectors are often chosen to form the basis of a vector space, and every vector in the space may be written as a linear combination of unit vectors. Orthogonal coordinates Cartesian coordinates Unit vectors ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersecting Chords Theorem
The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's ''Elements''. More precisely, for two chords ''AC'' and ''BD'' intersecting in a point ''S'' the following equation holds: :, AS, \cdot, SC, =, BS, \cdot, SD, The converse is true as well, that is if for two line segments ''AC'' and ''BD'' intersecting in S the equation above holds true, then their four endpoints ''A'', ''B'', ''C'' and ''D'' lie on a common circle. Or in other words if the diagonals of a quadrilateral ''ABCD'' intersect in ''S'' and fulfill the equation above then it is a cyclic quadrilateral In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent-secant Theorem
The tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's ''Elements''. Given a secant ''g'' intersecting the circle at points G1 and G2 and a tangent ''t'' intersecting the circle at point ''T'' and given that ''g'' and ''t'' intersect at point ''P'', the following equation holds: :, PT, ^2=, PG_1, \cdot, PG_2, The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem. References *S. Gottwald: ''The VNR Concise Encyclopedia of Mathematics''. Springer, 2012, , pp175-176*Michael L. O'Leary: ''Revolutions in Geometry''. Wiley, 2010, , p161*''Schülerduden - Mathematik I'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (mathematics)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intersecting Chords Theorem
The intersecting chords theorem or just the chord theorem is a statement in elementary geometry that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's ''Elements''. More precisely, for two chords ''AC'' and ''BD'' intersecting in a point ''S'' the following equation holds: :, AS, \cdot, SC, =, BS, \cdot, SD, The converse is true as well, that is if for two line segments ''AC'' and ''BD'' intersecting in S the equation above holds true, then their four endpoints ''A'', ''B'', ''C'' and ''D'' lie on a common circle. Or in other words if the diagonals of a quadrilateral ''ABCD'' intersect in ''S'' and fulfill the equation above then it is a cyclic quadrilateral In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]