Post Canonical System
   HOME





Post Canonical System
A Post canonical system, also known as a Post production system, as created by Emil Post, is a string-manipulation system that starts with finitely many strings and repeatedly transforms them by applying a finite set j of specified rules of a certain form, thus generating a formal language. Today they are mainly of historical relevance because every Post canonical system can be reduced to a string rewriting system (semi-Thue system), which is a simpler formulation. Both formalisms are Turing complete. Definition A Post canonical system is a triplet (A,I,R), where * A is a finite alphabet, and finite (possibly empty) strings on A are called ''words''. * I is a finite set of ''initial words''. * R is a finite set of string-transforming rules (called '' production rules''), each rule being of the following form: : \overset where each and is a specified fixed word, and each ''$'' and ''$' '' is a variable standing for an arbitrary word. The strings before and after the arrow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Emil Post
Emil Leon Post (; February 11, 1897 – April 21, 1954) was an American mathematician and logician. He is best known for his work in the field that eventually became known as computability theory. Life Post was born in Augustów, Suwałki Governorate, Congress Poland, Russian Empire (now Poland) into a Polish Jews, Polish-Jewish family that immigrated to New York City in May 1904. His parents were Arnold and Pearl Post. Post had been interested in astronomy, but at the age of twelve lost his left arm in a car accident. This loss was a significant obstacle to being a professional astronomer, leading to his decision to pursue mathematics rather than astronomy. Post attended the Townsend Harris High School and continued on to graduate from City College of New York in 1917 with a B.S. in mathematics. After completing his Doctor of philosophy, Ph.D. in mathematics in 1920 at Columbia University, supervised by Cassius Jackson Keyser, he did a post-doctorate at Princeton University in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Language
In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


String Rewriting System
In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a (usually finite) alphabet. Given a binary relation R between fixed strings over the alphabet, called rewrite rules, denoted by s\rightarrow t, an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is usv\rightarrow utv, where s, t, u, and v are strings. The notion of a semi-Thue system essentially coincides with the presentation of a monoid. Thus they constitute a natural framework for solving the word problem for monoids and groups. An SRS can be defined directly as an abstract rewriting system. It can also be seen as a restricted kind of a term rewriting system, in which all function symbols have an arity of at most 1. As a formalism, string rewriting systems are Turing complete. The semi-Thue name comes from the Norwegian math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turing Complete
Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher and theoretical biologist. He was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general-purpose computer. Turing is widely considered to be the father of theoretical computer science. Born in London, Turing was raised in southern England. He graduated from King's College, Cambridge, and in 1938, earned a doctorate degree from Princeton University. During World War II, Turing worked for the Government Code and Cypher School at Bletchley Park, Britain's codebreaking centre that produced Ultra intelligence. He led Hut 8, the section responsible for German naval cryptanalysis. Turing devised techniques for speeding the breaking of German ciphers, including improvements to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Production (computer Science)
In computer science, a production or production rule is a rewrite rule that replaces some symbols with other symbols. A finite set of productions P is the main component in the specification of a formal grammar (specifically a generative grammar). The other components are a finite set N of nonterminal symbols, a finite set (known as an alphabet) \Sigma of terminal symbols that is disjoint from N and a distinguished symbol S \in N that is the ''start symbol''. In an unrestricted grammar, a production is of the form u \to v, where u and v are arbitrary strings of terminals and nonterminals, and u may not be the empty string. If v is the empty string, this is denoted by the symbol \epsilon, or \lambda (rather than leaving the right-hand side blank). So productions are members of the cartesian product :V^*NV^* \times V^* = (V^*\setminus\Sigma^*) \times V^*, where V := N \cup \Sigma is the ''vocabulary'', ^ is the Kleene star operator, V^*NV^* indicates concatenation, \cup deno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Recursively Enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the set of input numbers for which the algorithm halts is exactly ''S''. Or, equivalently, *There is an algorithm that enumerates the members of ''S''. That means that its output is a list of all the members of ''S'': ''s''1, ''s''2, ''s''3, ... . If ''S'' is infinite, this algorithm will run forever, but each element of S will be returned after a finite amount of time. Note that these elements do not have to be listed in a particular way, say from smallest to largest. The first condition suggests why the term ''semidecidable'' is sometimes used. More precisely, if a number is in the set, one can ''decide'' this by running the algorithm, but if the number is not in the set, the algorithm can run forever, and no information is returned. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tag System
In the theory of computation, a tag system is a deterministic model of computation published by Emil Leon Post in 1943 as a simple form of a Post canonical system. A tag system may also be viewed as an abstract machine, called a Post tag machine (not to be confused with Post–Turing machines)—briefly, a finite-state machine whose only tape is a FIFO queue of unbounded length, such that in each transition the machine reads the symbol at the head of the queue, deletes a constant number of symbols from the head, and appends to the tail a symbol-string that depends solely on the first symbol read in this transition. Because all of the indicated operations are performed in a single transition, a tag machine strictly has only one state. Definitions A ''tag system'' is a triplet (''m'', ''A'', ''P''), where * ''m'' is a positive integer, called the ''deletion number''. * ''A'' is a finite alphabet of symbols, one of which can be a special ''halting symbol''. All finite (possibl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Grammar
A formal grammar is a set of Terminal and nonterminal symbols, symbols and the Production (computer science), production rules for rewriting some of them into every possible string of a formal language over an Alphabet (formal languages), alphabet. A grammar does not describe the semantics, meaning of the strings — only their form. In applied mathematics, formal language theory is the discipline that studies formal grammars and languages. Its applications are found in theoretical computer science, theoretical linguistics, Formal semantics (logic), formal semantics, mathematical logic, and other areas. A formal grammar is a Set_(mathematics), set of rules for rewriting strings, along with a "start symbol" from which rewriting starts. Therefore, a grammar is usually thought of as a language generator. However, it can also sometimes be used as the basis for a "recognizer"—a function in computing that determines whether a given string belongs to the language or is grammatical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chomsky Hierarchy
The Chomsky hierarchy in the fields of formal language theory, computer science, and linguistics, is a containment hierarchy of classes of formal grammars. A formal grammar describes how to form strings from a formal language's alphabet that are valid according to the language's syntax. The linguist Noam Chomsky theorized that four different classes of formal grammars existed that could generate increasingly complex languages. Each class can also completely generate the language of all inferior classes (set inclusive). History The general idea of a hierarchy of grammars was first described by Noam Chomsky in "Three models for the description of language" during the formalization of transformational-generative grammar (TGG). Marcel-Paul Schützenberger also played a role in the development of the theory of formal languages; the paper "The algebraic theory of context free languages" describes the modern hierarchy, including context-free grammars. Independently, alongside linguis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Journal Of Mathematics
The ''American Journal of Mathematics'' is a bimonthly mathematics journal published by the Johns Hopkins University Press. History The ''American Journal of Mathematics'' is the oldest continuously published mathematical journal in the United States, established in 1878 at the Johns Hopkins University by James Joseph Sylvester, an English-born mathematician who also served as the journal's editor-in-chief from its inception through early 1884. Initially W. E. Story was associate editor in charge; he was replaced by Thomas Craig (mathematician), Thomas Craig in 1880. For volume 7 Simon Newcomb became chief editor with Craig managing until 1894. Then with volume 16 it was "Edited by Thomas Craig with the Co-operation of Simon Newcomb" until 1898. Other notable mathematicians who have served as editors or editorial associates of the journal include Frank Morley, Oscar Zariski, Lars Ahlfors, Hermann Weyl, Wei-Liang Chow, S. S. Chern, André Weil, Harish-Chandra, Jean Dieudonné, Hen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Marvin Minsky
Marvin Lee Minsky (August 9, 1927 – January 24, 2016) was an American cognitive scientist, cognitive and computer scientist concerned largely with research in artificial intelligence (AI). He co-founded the Massachusetts Institute of Technology's AI laboratory and wrote extensively about AI and philosophy. Minsky received many accolades and honors, including the 1969 Turing Award. Early life and education Marvin Lee Minsky was born in New York City, to Henry, an eye surgeon, and Fannie (Reiser), a Zionism, Zionist activist. His family was Jewish. He attended the Ethical Culture Fieldston School and the Bronx High School of Science. He later attended Phillips Academy in Andover, Massachusetts, Andover, Massachusetts. He then served in the United States Navy, US Navy from 1944 to 1945. He received a B.A. in mathematics from Harvard University in 1950 and a Doctor of Philosophy, Ph.D. in mathematics from Princeton University in 1954. His doctoral dissertation was titled "Theory of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Languages
In logic, mathematics, computer science, and linguistics, a formal language is a set of string (computer science), strings whose symbols are taken from a set called "#Definition, alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called Formal language#Definition, ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]