Popescu's Theorem
   HOME
*





Popescu's Theorem
In commutative algebra and algebraic geometry, Popescu's theorem, introduced by Dorin Popescu, states: :Let ''A'' be a Noetherian ring and ''B'' a Noetherian algebra over it. Then, the structure map ''A'' → ''B'' is a regular homomorphism if and only if ''B'' is a direct limit of smooth ''A''-algebras. For example, if ''A'' is a local G-ring (e.g., a local excellent ring) and ''B'' its completion, then the map ''A'' → ''B'' is regular by definition and the theorem applies. Another proof of Popescu's theorem was given by Tetsushi Ogoma, while an exposition of the result was provided by Richard Swan. The usual proof of the Artin approximation theorem In mathematics, the Artin approximation theorem is a fundamental result of in deformation theory which implies that formal power series with coefficients in a field (mathematics), field ''k'' are well-approximated by the algebraic functions on ''k' ... relies crucially on Popescu's theorem. Popescu's result was proved by an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and ''p''-adic integers. Commutative algebra is the main technical tool in the local study of schemes. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


G-ring
In commutative algebra, a G-ring or Grothendieck ring is a Noetherian ring such that the map of any of its local rings to the completion is regular (defined below). Almost all Noetherian rings that occur naturally in algebraic geometry or number theory are G-rings, and it is quite hard to construct examples of Noetherian rings that are not G-rings. The concept is named after Alexander Grothendieck. A ring that is a both G-ring and a J-2 ring is called a quasi-excellent ring, and if in addition it is universally catenary it is called an excellent ring. Definitions *A (Noetherian) ring ''R'' containing a field ''k'' is called geometrically regular over ''k'' if for any finite extension ''K'' of ''k'' the ring ''R'' ⊗''k'' ''K'' is a regular ring. *A homomorphism of rings from ''R'' to ''S'' is called regular if it is flat and for every ''p'' ∈ Spec(''R'') the fiber ''S'' ⊗''R'' ''k''(''p'') is geometrically regular over the residue field ''k'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximation Property (ring Theory)
In algebra, a commutative Noetherian ring ''A'' is said to have the approximation property with respect to an ideal ''I'' if each finite system of polynomial equations with coefficients in ''A'' has a solution in ''A'' if and only if it has a solution in the ''I''-adic completion of ''A''. The notion of the approximation property is due to Michael Artin. See also *Artin approximation theorem *Popescu's theorem In commutative algebra and algebraic geometry, Popescu's theorem, introduced by Dorin Popescu, states: :Let ''A'' be a Noetherian ring and ''B'' a Noetherian algebra over it. Then, the structure map ''A'' → ''B'' is a regular homomorphism if and ... Notes References * * * * Ring theory {{algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * * * * ISI Ale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Artin Approximation Theorem
In mathematics, the Artin approximation theorem is a fundamental result of in deformation theory which implies that formal power series with coefficients in a field ''k'' are well-approximated by the algebraic functions on ''k''. More precisely, Artin proved two such theorems: one, in 1968, on approximation of complex analytic solutions by formal solutions (in the case k = \Complex); and an algebraic version of this theorem in 1969. Statement of the theorem Let \mathbf = x_1, \dots, x_n denote a collection of ''n'' indeterminates, k \mathbf the ring of formal power series with indeterminates \mathbf over a field ''k'', and \mathbf = y_1, \dots, y_n a different set of indeterminates. Let :f(\mathbf, \mathbf) = 0 be a system of polynomial equations in k mathbf, \mathbf/math>, and ''c'' a positive integer. Then given a formal power series solution \hat(\mathbf) \in k \mathbf, there is an algebraic solution \mathbf(\mathbf) consisting of algebraic functions (more precisely, alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Swan
Richard Gordon Swan (; born 1933) is an American mathematician who is known for the Serre–Swan theorem relating the geometric notion of vector bundles to the algebraic concept of projective modules, and for the Swan representation, an ''l''-adic projective representation of a Galois group. His work has mainly been in the area of algebraic K-theory. Education and career As an undergraduate at Princeton University, Swan was one of five winners in the William Lowell Putnam Mathematical Competition in 1952. He earned his Ph.D. in 1957 from Princeton University under the supervision of John Coleman Moore. In 1969 he proved in full generality what is now known as the Stallings-Swan theorem. He is the Louis Block Professor Emeritus of Mathematics at the University of Chicago.. His doctoral students at Chicago include Charles Weibel, also known for his work in K-theory. Awards and honors In 1970 Swan was awarded the American Mathematical Society The American Mathematical Socie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work. Proofs employ logic expressed in mathematical symbols ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completion Of A Ring
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions ''R'' on a space ''X'' concentrates on a formal neighborhood of a point of ''X'': heuristically, this is a neighborhood so small that ''all'' Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when ''R'' has a metric given by a non-Archimedean absolute value. General construction Suppose that ''E'' is an abelian group with a descending filtration : E = F^0 E \supset F^1 E \supset F^2 E \supset \cdots \, of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Excellent Ring
In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal. The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; showed this in characteristic (algebra), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Ring
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non-units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x'' is any element of ''R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Algebra
In algebra, a commutative ''k''-algebra ''A'' is said to be 0-smooth if it satisfies the following lifting property: given a ''k''-algebra ''C'', an ideal ''N'' of ''C'' whose square is zero and a ''k''-algebra map u: A \to C/N, there exists a ''k''-algebra map v: A \to C such that ''u'' is ''v'' followed by the canonical map. If there exists at most one such lifting ''v'', then ''A'' is said to be 0-unramified (or 0-neat). ''A'' is said to be 0-étale if it is 0-smooth and 0-unramified. The notion of 0-smoothness is also called formal smoothness. A finitely generated ''k''-algebra ''A'' is 0-smooth over ''k'' if and only if Spec ''A'' is a smooth scheme over ''k''. A separable algebraic field extension ''L'' of ''k'' is 0-étale over ''k''. The formal power series ring k _1,_\ldots,_t_n.html" ;"title="![t_1, \ldots, t_n">![t_1, \ldots, t_n!/math> is 0-smooth only when \operatornamek = p > 0 and [k: k^p] and I = (t_1, \ldots, t_n). Then ''B'' is ''I''-smooth over ''A''. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]