Pollard's Rho Algorithm For Logarithms
   HOME
*





Pollard's Rho Algorithm For Logarithms
Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem. The goal is to compute \gamma such that \alpha ^ \gamma = \beta, where \beta belongs to a cyclic group G generated by \alpha. The algorithm computes integers a, b, A, and B such that \alpha^a \beta^b = \alpha^A \beta^B. If the underlying group is cyclic of order n, by substituting \beta as a^ and noting that two powers are equal if and only if the exponents are equivalent modulo the order of the base, in this case modulo n, we get that \gamma is one of the solutions of the equation (B-b) \gamma = (a-A) \pmod n. Solutions to this equation are easily obtained using the extended Euclidean algorithm. To find the needed a, b, A, and B the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence x_i = \alpha^ \beta^, where the function f: x_i \mapst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Pollard (mathematician)
John M. Pollard (born 1941) is a British mathematician who has invented algorithms for the factorization of large numbers and for the calculation of discrete logarithms. His factorization algorithms include the rho, ''p'' − 1, and the first version of the special number field sieve, which has since been improved by others. His discrete logarithm algorithms include the rho algorithm for logarithms and the kangaroo algorithm. He received the RSA Award for Excellence in Mathematics RSA may refer to: Organizations Academia and education * Rabbinical Seminary of America, a yeshiva in New York City *Regional Science Association International (formerly the Regional Science Association), a US-based learned society *Renaissance S .... External links John Pollard's web site Living people 20th-century British mathematicians 21st-century British mathematicians Number theorists Place of birth missing (living people) 1941 births {{UK-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floyd's Cycle-finding Algorithm
In computer science, cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values. For any function that maps a finite set to itself, and any initial value in , the sequence of iterated function values : x_0,\ x_1=f(x_0),\ x_2=f(x_1),\ \dots,\ x_i=f(x_),\ \dots must eventually use the same value twice: there must be some pair of distinct indices and such that . Once this happens, the sequence must continue periodically, by repeating the same sequence of values from to . Cycle detection is the problem of finding and , given and . Several algorithms for finding cycles quickly and with little memory are known. Robert W. Floyd's tortoise and hare algorithm moves two pointers at different speeds through the sequence of values until they both point to equal values. Alternatively, Brent's algorithm is based on the idea of exponential search. Both Floyd's and Brent's algorithms use only a constant number of memory ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematics Of Computation
''Mathematics of Computation'' is a bimonthly mathematics journal focused on computational mathematics. It was established in 1943 as ''Mathematical Tables and other Aids to Computation'', obtaining its current name in 1960. Articles older than five years are available electronically free of charge. Abstracting and indexing The journal is abstracted and indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 2.417. References External links * Delayed open access journals English-language journals Mathematics journals Publications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by another integer m if m is a divisor of n; this implies dividing n by m leaves no remainder. Definition An integer is divisible by a nonzero integer if there exists an integer such that n=km. This is written as :m\mid n. Other ways of saying the same thing are that divides , is a divisor of , is a factor of , and is a multiple of . If does not divide , then the notation is m\not\mid n. Usually, is required to be nonzero, but is allowed to be zero. With this convention, m \mid 0 for every nonzero integer . Some definitions omit the requirement that m be nonzero. General Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4; they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pohlig–Hellman Algorithm
In group theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm, Mollin 2006, pg. 344 is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer. The algorithm was introduced by Roland Silver, but first published by Stephen Pohlig and Martin Hellman (independent of Silver). Groups of prime-power order As an important special case, which is used as a subroutine in the general algorithm (see below), the Pohlig–Hellman algorithm applies to groups whose order is a prime power. The basic idea of this algorithm is to iteratively compute the p-adic digits of the logarithm by repeatedly "shifting out" all but one unknown digit in the exponent, and computing that digit by elementary methods. (Note that for readability, the algorithm is stated for cyclic groups — in general, G must be replaced by the subgroup \langle g\rangle generated by g, which is always cyclic.) :Input. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disjoint Subsets
Disjoint may refer to: *Disjoint sets, sets with no common elements *Mutual exclusivity, the impossibility of a pair of propositions both being true See also *Disjoint union *Disjoint-set data structure In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that stores a collection of disjoint (non-overlapping) sets. Equivalently, it stores a partition of a set ... {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Extended Euclidean Algorithm
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's identity, which are integers ''x'' and ''y'' such that : ax + by = \gcd(a, b). This is a certifying algorithm, because the gcd is the only number that can simultaneously satisfy this equation and divide the inputs. It allows one to compute also, with almost no extra cost, the quotients of ''a'' and ''b'' by their greatest common divisor. also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when ''a'' and ''b'' are coprime. With that provision, ''x'' is the modular multiplicative inverse of ''a'' modulo ''b'', and ''y'' is the modular multiplicative inverse of ''b'' modul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Logarithm
In mathematics, for given real numbers ''a'' and ''b'', the logarithm log''b'' ''a'' is a number ''x'' such that . Analogously, in any group ''G'', powers ''b''''k'' can be defined for all integers ''k'', and the discrete logarithm log''b'' ''a'' is an integer ''k'' such that . In number theory, the more commonly used term is index: we can write ''x'' = ind''r'' ''a'' (mod ''m'') (read "the index of ''a'' to the base ''r'' modulo ''m''") for ''r''''x'' ≡ ''a'' (mod ''m'') if ''r'' is a primitive root of ''m'' and gcd(''a'',''m'') = 1. Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. Several important algorithms in public-key cryptography, such as ElGamal base their security on the assumption that the discrete logarithm problem over carefully chosen groups has no efficient solution. Definition Let ''G'' be any group. Denote its group operation by mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Of A Group
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 has th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]