Pokhozhaev's Identity
   HOME
*





Pokhozhaev's Identity
Pokhozhaev's identity is an integral relation satisfied by stationary localized solutions to a nonlinear Schrödinger equation or nonlinear Klein–Gordon equation. It was obtained by S.I. Pokhozhaev and is similar to the virial theorem. This relation is also known as G.H. Derrick's theorem. Similar identities can be derived for other equations of mathematical physics. The Pokhozhaev identity for the stationary nonlinear Schrödinger equation Here is a general form due to H. Berestycki and P.-L. Lions. Let g(s) be continuous and real-valued, with g(0)=0. Denote G(s)=\int_0^s g(t)\,dt. Let :u\in L^\infty_(\R^n), \qquad \nabla u\in L^2(\R^n), \qquad G(u)\in L^1(\R^n), \qquad n\in\N, be a solution to the equation :-\nabla^2 u=g(u), in the sense of distributions. Then u satisfies the relation :\frac\int_, \nabla u(x), ^2\,dx=n\int_G(u(x))\,dx. The Pokhozhaev identity for the stationary nonlinear Dirac equation There is a form of the virial identity for the stationary non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Soliton
In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. The soliton phenomenon was first described in 1834 by John Scott Russell (1808–1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation". Definition A single, consensus definition of a soliton is difficult to find. ascribe three properties to solitons: # They are of permanent form; # They are localized within a region; # They can interact with other solitons, and emerge from the collision unchanged, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Identities
In mathematics, an identity is an equality relating one mathematical expression ''A'' to another mathematical expression ''B'', such that ''A'' and ''B'' (which might contain some variables) produce the same value for all values of the variables within a certain range of validity. In other words, ''A'' = ''B'' is an identity if ''A'' and ''B'' define the same functions, and an identity is an equality between functions that are differently defined. For example, (a+b)^2 = a^2 + 2ab + b^2 and \cos^2\theta + \sin^2\theta =1 are identities. Identities are sometimes indicated by the triple bar symbol instead of , the equals sign. Common identities Algebraic identities Certain identities, such as a+0=a and a+(-a)=0, form the basis of algebra, while other identities, such as (a+b)^2 = a^2 + 2ab +b^2 and a^2 - b^2 = (a+b)(a-b), can be useful in simplifying algebraic expressions and expanding them. Trigonometric identities Geometrically, trigonometric ide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virial Theorem
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states \left\langle T \right\rangle = -\frac12\,\sum_^N \bigl\langle \mathbf_k \cdot \mathbf_k \bigr\rangle where is the total kinetic energy of the particles, represents the force on the th particle, which is located at position , and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from ''vis'', the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870. The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distribution (mathematics)
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spinor
In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation. Unlike vectors and tensors, a spinor transforms to its negative when the space is continuously rotated through a complete turn from 0° to 360° (see picture). This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms). It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which case the Lorentz transformations of special relativity play the role of rotations. Spinors were introduced in geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Operator
In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928. Formal definition In general, let ''D'' be a first-order differential operator acting on a vector bundle ''V'' over a Riemannian manifold ''M''. If :D^2=\Delta, \, where ∆ is the Laplacian of ''V'', then ''D'' is called a Dirac operator. In high-energy physics, this requirement is often relaxed: only the second-order part of ''D''2 must equal the Laplacian. Examples Example 1 ''D'' = −''i'' ∂''x'' is a Dirac operator on the tangent bundle over a line. Example 2 Consider a simple bundle of notable import ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirac Matrices
In mathematical physics, the gamma matrices, \left\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(\mathbb). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin- particles. In Dirac representation, the four contravariant gamma matrices are :\begin \gamma^0 &= \begin 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint
In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a star-algebra is self-adjoint if it is closed under the involution operation. For example, if x^*=y then since y^*=x^=x in a star-algebra, the set is a self-adjoint set even though ''x'' and ''y'' need not be self-adjoint elements. In functional analysis, a linear operator A : H \to H on a Hilbert space is called self-adjoint if it is equal to its own adjoint ''A''. See self-adjoint operator for a detailed discussion. If the Hilbert space is finite-dimensional and an orthonormal basis has been chosen, then the operator ''A'' is self-adjoint if and only if the matrix describing ''A'' with respect to this basis is Hermitian, i.e. if it is equal to its own conjugate transpose. Hermitian matrices are also called self-adjoint. In a dagger categor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonlinear Dirac Equation
:''See Ricci calculus and Van der Waerden notation for the notation.'' In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons. The nonlinear Dirac equation appears in the Einstein–Cartan–Sciama–Kibble theory of gravity, which extends general relativity to matter with intrinsic angular momentum ( spin). This theory removes a constraint of the symmetry of the affine connection and treats its antisymmetric part, the torsion tensor, as a variable in varying the action. In the resulting field equations, the torsion tensor is a homogeneous, linear function of the spin tensor. The minimal coupling between torsion and Dirac spinors thus generates an axial-axial, spin–spin interaction in fermionic matter, which becomes significant only at extremely high densities. Consequently, the Dirac equation becomes nonlinear (cubic) in the spi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonlinear Schrödinger Equation
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distribution (mathematics)
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]