Phragmén–Lindelöf Principle
   HOME
*





Phragmén–Lindelöf Principle
In complex analysis, the Phragmén–Lindelöf principle (or method), first formulated by Lars Edvard Phragmén (1863–1937) and Ernst Leonard Lindelöf (1870–1946) in 1908, is a technique which employs an auxiliary, parameterized function to prove the boundedness of a holomorphic function f (i.e, , f(z), ) on an unbounded domain \Omega when an additional (usually mild) condition constraining the growth of , f, on \Omega is given. It is a generalization of the , which is only applicable to bounded domains.


Background

In the theory of complex functions, it is known that the modulus (absolute value) of a

Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, which will output a function depending on temporal frequency or spatial frequency respectively. That process is also called ''analysis''. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term ''Fourier transform'' refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time. The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude (absolute value) of the complex value represents the amplitude of a constituent complex sinusoid with that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elias M
Elias is the Greek equivalent of Elijah ( he, אֵלִיָּהוּ‎ ''ʾĒlīyyāhū''; Syriac language, Syriac: ܐܠܝܐ ''Eliyā''; Arabic language, Arabic: الیاس Ilyās, Ilyās/Elyās), a prophet in the Kingdom of Israel (Samaria), Northern Kingdom of Israel in the 9th century BC, mentioned in several holy books. Due to Elias' role in the scriptures and to many later associated traditions, the name is used as a personal name in numerous languages. Variants * Éilias Irish language, Irish * Elia Italian language, Italian, English language, English * Elias Norwegian language, Norwegian * Elías Icelandic language, Icelandic * Éliás Hungarian language, Hungarian * Elías Spanish language, Spanish * Eliáš, Elijáš Czech language, Czech * Elias, Eelis, Eljas Finnish language, Finnish * Elias Danish language, Danish, German language, German, Swedish language, Swedish * Elias Portuguese language, Portuguese * Elias, Iliya () Persian language, Persian * Elias, Elis Swedish l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carlson's Theorem
In mathematics, in the area of complex analysis, Carlson's theorem is a uniqueness theorem which was discovered by Fritz David Carlson. Informally, it states that two different analytic functions which do not grow very fast at infinity can not coincide at the integers. The theorem may be obtained from the Phragmén–Lindelöf theorem, which is itself an extension of the maximum-modulus theorem. Carlson's theorem is typically invoked to defend the uniqueness of a Newton series expansion. Carlson's theorem has generalized analogues for other expansions. Statement Assume that satisfies the following three conditions: the first two conditions bound the growth of at infinity, whereas the third one states that vanishes on the non-negative integers. * is an entire function of exponential type, meaning that , f(z), \leq C e^, \quad z \in \mathbb for some real values , . * There exists such that , f(iy), \leq C e^, \quad y \in \mathbb * for any non-negative integer . Then i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lindelöf's Theorem
In mathematics, Lindelöf's theorem is a result in complex analysis named after the Finnish mathematician Ernst Leonard Lindelöf. It states that a holomorphic function on a half-strip in the complex plane that is bounded on the boundary of the strip and does not grow "too fast" in the unbounded direction of the strip must remain bounded on the whole strip. The result is useful in the study of the Riemann zeta function, and is a special case of the Phragmén–Lindelöf principle. Also, see Hadamard three-lines theorem In complex analysis, a branch of mathematics, the Hadamard three-lines theorem is a result about the behaviour of holomorphic functions defined in regions bounded by parallel lines in the complex plane. The theorem is named after the French mathema .... Statement of the theorem Let \Omega be a half-strip in the complex plane: :\Omega = \ \subsetneq \mathbb. Suppose that f is holomorphic (i.e. analytic) on \Omega and that there are constants M, A, and B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value \infty for infinity. With the Riemann model, the point \infty is near to very large numbers, just as the point 0 is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as 1/0=\infty well-behaved. For example, any rational function on the complex plane can be extended to a holomorphic function on the Riemann sphere, with the poles of the rational function mapping to infinity. More generally, any meromorphic function can be thought of as a holomorphic function whose codomain is the Riemann sphere. In geometry, the Riemann sphere is the prototypical example of a Riemann surface, and is one of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circular Sector
A circular sector, also known as circle sector or disk sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, where the smaller area is known as the ''minor sector'' and the larger being the ''major sector''. In the diagram, is the central angle, r the radius of the circle, and L is the arc length of the minor sector. The angle formed by connecting the endpoints of the arc to any point on the circumference that is not in the sector is equal to half the central angle. Types A sector with the central angle of 180° is called a '' half-disk'' and is bounded by a diameter and a semicircle. Sectors with other central angles are sometimes given special names, such as quadrants (90°), sextants (60°), and octants (45°), which come from the sector being one 4th, 6th or 8th part of a full circle, respectively. Confusingly, the arc of a quadrant (a circular arc) can also be termed a quadrant. Compass Traditionally wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subharmonic Function
In mathematics, subharmonic and superharmonic functions are important classes of function (mathematics), functions used extensively in partial differential equations, complex analysis and potential theory. Intuitively, subharmonic functions are related to convex functions of one variable as follows. If the graph of a function, graph of a convex function and a line intersect at two points, then the graph of the convex function is ''below'' the line between those points. In the same way, if the values of a subharmonic function are no larger than the values of a harmonic function on the ''boundary'' of a ball (mathematics), ball, then the values of the subharmonic function are no larger than the values of the harmonic function also ''inside'' the ball. ''Superharmonic'' functions can be defined by the same description, only replacing "no larger" with "no smaller". Alternatively, a superharmonic function is just the additive inverse, negative of a subharmonic function, and for this rea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lars Edvard Phragmén
Lars Edvard Phragmén (2 September 1863 Örebro – 13 March 1937) was a Swedish mathematician. The son of a college professor, he studied at Uppsala then Stockholm, graduating from Uppsala in 1889. He became professor at Stockholm in 1892, after Sofia Kovalevskaia. He left Uppsala less than a year after, becoming professor Mittag-Leffler's assistant at Stockholm. In 1884, he provided a new proof of the Cantor-Bendixson theorem. His work focused on elliptic functions and complex analysis. His most famous result is the extension of Liouville's theorem to analytic functions on a sector. A first version was proposed by Phragmén, then improved by the Finnish mathematician Ernst Lindelöf. They jointly published this last version,« ''Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogènes dans le voisinage d'un point singulier'' », Acta Math. 31, 1908 known as the Phragmén–Lindelöf principle. He left the university in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bounded Set
:''"Bounded" and "boundary" are distinct concepts; for the latter see boundary (topology). A circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. In mathematical analysis and related areas of mathematics, a set is called bounded if it is, in a certain sense, of finite measure. Conversely, a set which is not bounded is called unbounded. The word 'bounded' makes no sense in a general topological space without a corresponding metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem .... A bounded set is not necessarily a closed set and vise versa. For example, a subset ''S'' of a 2-dimensional real space R''2'' constrained by two parabolic curves ''x''2 + 1 and ''x''2 - 1 defined in a Cartesian coordinate system is a closed but is not b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]