Phillip Griffiths
   HOME
*





Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory. He also worked on partial differential equations, coauthored with Shiing-Shen Chern, Robert Bryant and Robert Gardner on Exterior Differential Systems. Professional career He received his BS from Wake Forest College in 1959 and his PhD from Princeton University in 1962 after completing a doctoral dissertation, titled "On certain homogeneous complex manifolds", under the supervision of Donald Spencer. Afterwards, he held positions at University of California, Berkeley (1962–1967) and Princeton University (1967–1972). Griffiths was a professor of mathematics at Harvard University from 1972 to 1983. He was then a Provost and James B. Duke Professor o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phillip Griffith
Phillip Alan Griffith (born December 29, 1940) is a mathematician and professor emeritus at University of Illinois at Urbana-Champaign who works on commutative algebra and ring theory. He received his PhD from the University of Houston in 1968. Griffith is the editor-in-chief of the ''Illinois Journal of Mathematics'' In 1971, Griffith received a Sloan Fellowship The Sloan Research Fellowships are awarded annually by the Alfred P. Sloan Foundation since 1955 to "provide support and recognition to early-career scientists and scholars". This program is one of the oldest of its kind in the United States. .... Publications * * References 20th-century American mathematicians Living people University of Illinois Urbana-Champaign faculty 1940 births University of Houston alumni 21st-century American mathematicians {{US-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Andrew J
Andrew is the English form of a given name common in many countries. In the 1990s, it was among the top ten most popular names given to boys in English-speaking countries. "Andrew" is frequently shortened to "Andy" or "Drew". The word is derived from the el, Ἀνδρέας, ''Andreas'', itself related to grc, ἀνήρ/ἀνδρός ''aner/andros'', "man" (as opposed to "woman"), thus meaning "manly" and, as consequence, "brave", "strong", "courageous", and "warrior". In the King James Bible, the Greek "Ἀνδρέας" is translated as Andrew. Popularity Australia In 2000, the name Andrew was the second most popular name in Australia. In 1999, it was the 19th most common name, while in 1940, it was the 31st most common name. Andrew was the first most popular name given to boys in the Northern Territory in 2003 to 2015 and continuing. In Victoria, Andrew was the first most popular name for a boy in the 1970s. Canada Andrew was the 20th most popular name chosen for mal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Princeton, New Jersey
Princeton is a municipality with a borough form of government in Mercer County, in the U.S. state of New Jersey. It was established on January 1, 2013, through the consolidation of the Borough of Princeton and Princeton Township, both of which are now defunct. Centrally located within the Raritan Valley region, Princeton is a regional commercial hub for the Central New Jersey region and a commuter town in the New York metropolitan area.New York-Newark, NY-NJ-CT-PA Combined Statistical Area
. Accessed December 5, 2020.
As of the

Robert Brown Gardner
Robert Brown (Robby) Gardner (February 27, 1939 – May 5, 1998) was an American mathematician who worked on differential geometry, a field in which he obtained several novel results. He was the author and co-author of three influential books, produced more than fifty papers, eighteen masters students and thirteen Ph.D students. His 1991 book, ''Exterior Differential Systems'', coauthored with R. Bryant, S. S. Chern, H. Goldschmidt, and P. Griffiths, is the standard reference for the subject. Robert Bryant, Duke University's Professor of Mathematics and the president of the American Mathematical Society (2015-2017) was a student of his. He is better known in the United States for his improvements and popularization of the methods of Élie Cartan (most notably, Cartan's equivalence method, an algorithmic procedure for determining if two geometric shapes are different). The works of Cartan were hard to grasp for most students, and Gardner worked to explain them in more access ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robert Bryant (mathematician)
Robert Leamon Bryant (born August 30, 1953, Kipling) is an American mathematician. He works at Duke University and specializes in differential geometry. Education and career Bryant grew up in a farming family in Harnett County and was a first-generation college student. He obtained a bachelor's degree at North Caroline State University at Raleigh in 1974 and a PhD at University of North Carolina at Chapel Hill in 1979. His thesis was entitled "''Some Aspects of the Local and Global Theory of Pfaffian Systems''" and was written under the supervision of Robert Gardner. He worked at Rice University for seven years, as assistant professor (1979–1981), associate professor (1981–1982) and full professor (1982–1986). He then moved to Duke University, where he worked for twenty years as J. M. Kreps Professor. Between 2007 and 2013 he worked as full professor at University of California, Berkeley, where he served as the director of the Mathematical Sciences Research Institute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moduli Theory
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric problems. Here different solutions are identified if they ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variation Of Hodge Structure
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989). Hodge structures Definition of Hodge structures A pure Hodge structure of integer weight ''n'' consists of an abelian group H_ and a decomposition of its complexification ''H'' into a direct sum of complex subspaces H^, where p+q=n, with the property that the complex conjugate of H^ is H^: :H := H_\otimes_ \Complex = \bigop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shiing-Shen Chern
Shiing-Shen Chern (; , ; October 28, 1911 – December 3, 2004) was a Chinese-American mathematician and poet. He made fundamental contributions to differential geometry and topology. He has been called the "father of modern differential geometry" and is widely regarded as a leader in geometry and one of the greatest mathematicians of the twentieth century, winning numerous awards and recognition including the Wolf Prize and the inaugural Shaw Prize. In memory of Shiing-Shen Chern, the International Mathematical Union established the Chern Medal in 2010 to recognize "an individual whose accomplishments warrant the highest level of recognition for outstanding achievements in the field of mathematics". Chern worked at the Institute for Advanced Study (1943–45), spent about a decade at the University of Chicago (1949-1960), and then moved to University of California, Berkeley, where he co-founded the Mathematical Sciences Research Institute in 1982 and was the institute's found ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brouwer Medal
The Brouwer Medal is a triennial award presented by the Royal Dutch Mathematical Society and the Royal Netherlands Academy of Sciences. The Brouwer Metal gets its name from Dutch mathematician L. E. J. Brouwer and is the Netherlands’ most prestigious award in mathematics. Recipients *1970 René Thom *1973 Abraham Robinson *1978 Armand Borel *1981 Harry Kesten *1984 Jürgen Moser *1987 Yuri I. Manin *1990 Walter Murray Wonham, W. M. Wonham *1993 László Lovász *1996 Wolfgang Hackbusch *1999 George Lusztig *2002 Michael Aizenman *2005 Lucien Birgé *2008 Phillip Griffiths *2011 Kim Plofker *2014 John N. Mather *2017 Ken Ribet *2020 David Aldous References

{{International mathematical activities Dutch science and technology awards Mathematics awards ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]