Permutoassociahedron
   HOME
*



picture info

Permutoassociahedron
In mathematics, the permutoassociahedron is an n-dimensional polytope whose vertices correspond to the bracketings of the permutations of n+1 terms and whose edges connect two bracketings that can be obtained from one another either by moving a pair of brackets using associativity or by transposing two consecutive terms that are not separated by a bracket. The permutoassociahedron was first defined as a CW complex by Mikhail Kapranov who noted that this structure appears implicitly in Mac Lane's coherence theorem for symmetric and braided categories as well as in Vladimir Drinfeld's work on the Knizhnik–Zamolodchikov equations. It was constructed as a convex polytope by Victor Reiner and Günter M. Ziegler. Examples When n = 2, the vertices of the permutoassociahedron can be represented by bracketing all the permutations of three terms a, b, and c. There are six such permutations, abc, acb, bac, bca, cab, and cba, and each of them admits two bracketings (obtained from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Permutoassociahedron
In mathematics, the permutoassociahedron is an n-dimensional polytope whose vertices correspond to the bracketings of the permutations of n+1 terms and whose edges connect two bracketings that can be obtained from one another either by moving a pair of brackets using associativity or by transposing two consecutive terms that are not separated by a bracket. The permutoassociahedron was first defined as a CW complex by Mikhail Kapranov who noted that this structure appears implicitly in Mac Lane's coherence theorem for symmetric and braided categories as well as in Vladimir Drinfeld's work on the Knizhnik–Zamolodchikov equations. It was constructed as a convex polytope by Victor Reiner and Günter M. Ziegler. Examples When n = 2, the vertices of the permutoassociahedron can be represented by bracketing all the permutations of three terms a, b, and c. There are six such permutations, abc, acb, bac, bca, cab, and cba, and each of them admits two bracketings (obtained from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclohedron
In geometry, the cyclohedron is a d-dimensional polytope where d can be any non-negative integer. It was first introduced as a combinatorial object by Raoul Bott and Clifford Taubes and, for this reason, it is also sometimes called the Bott–Taubes polytope. It was later constructed as a polytope by Martin Markl and by Rodica Simion. Rodica Simion describes this polytope as an associahedron of type B. The cyclohedron is useful in studying knot invariants. Construction Cyclohedra belong to several larger families of polytopes, each providing a general construction. For instance, the cyclohedron belongs to the generalized associahedra that arise from cluster algebra, and to the graph-associahedra, a family of polytopes each corresponding to a graph. In the latter family, the graph corresponding to the d-dimensional cyclohedron is a cycle on d+1 vertices. In topological terms, the configuration space of d+1 distinct points on the circle S^1 is a (d+1)-dimensional manifold, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Associahedron
In mathematics, an associahedron is an -dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of letters, and the edges correspond to single application of the associativity rule. Equivalently, the vertices of an associahedron correspond to the triangulations of a regular polygon with sides and the edges correspond to edge flips in which a single diagonal is removed from a triangulation and replaced by a different diagonal. Associahedra are also called Stasheff polytopes after the work of Jim Stasheff, who rediscovered them in the early 1960s after earlier work on them by Dov Tamari. Examples The one-dimensional associahedron ''K''3 represents the two parenthesizations ((''xy'')''z'') and (''x''(''yz'')) of three symbols, or the two triangulations of a square. It is itself a line segment. The two-dimensional associahedron ''K''4 represents the five parenthesizations of four symbols, or th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutohedron
In mathematics, the permutohedron of order ''n'' is an (''n'' − 1)-dimensional polytope embedded in an ''n''-dimensional space. Its vertex coordinates (labels) are the permutations of the first ''n'' natural numbers. The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1). The image on the right shows the permutohedron of order 4, which is the truncated octahedron. Its vertices are the 24 permutations of (1, 2, 3, 4). Parallel edges have the same edge color. The 6 edge colors correspond to the 6 possible transpositions of 4 elements, i.e. they indicate in which two places the connected permutations differ. (E.g. red edges connect permutations that differ in the last two places.) History According to , permutohedra were first studied by . The name ''permut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematika
''Mathematika'' is a peer-reviewed mathematics journal that publishes both pure and applied mathematical articles. The journal was founded by Harold Davenport in the 1950s. The journal is published by the London Mathematical Society, on behalf of the journal's owner University College London. Indexing and abstracting According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.844. The journal in indexing in the following bibliographic databases: * MathSciNet * Science Citation Index Expanded * Web of Science * Zentralblatt MATH zbMATH Open, formerly Zentralblatt MATH, is a major reviewing service providing reviews and abstracts for articles in pure and applied mathematics, produced by the Berlin office of FIZ Karlsruhe – Leibniz Institute for Information Infrastructur ... References {{reflist London Mathematical Society Mathematics education in the United Kingdom Mathematics journals Publications established in 1954 Quarterly journals W ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flip Graph
In mathematics, a flip graph is a graph whose vertices are combinatorial or geometric objects, and whose edges link two of these objects when they can be obtained from one another by an elementary operation called a flip. Flip graphs are special cases of geometric graphs. Among noticeable flip graphs, one finds the 1-skeleton of polytopes such as associahedra or cyclohedra. Examples A prototypical flip graph is that of a convex n-gon \pi. The vertices of this graph are the triangulations of \pi, and two triangulations are adjacent in it whenever they differ by a single interior edge. In this case, the flip operation consists in exchanging the diagonals of a convex quadrilateral. These diagonals are the interior edges by which two triangulations adjacent in the flip graph differ. The resulting flip graph is both the Hasse diagram of the Tamari lattice and the 1-skeleton of the (n-3)-dimensional associahedron. This basic construction can be generalized in a number of wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


N-skeleton
In mathematics, particularly in algebraic topology, the of a topological space presented as a simplicial complex (resp. CW complex) refers to the subspace that is the union of the simplices of (resp. cells of ) of dimensions In other words, given an inductive definition of a complex, the is obtained by stopping at the . These subspaces increase with . The is a discrete space, and the a topological graph. The skeletons of a space are used in obstruction theory, to construct spectral sequences by means of filtrations, and generally to make inductive arguments. They are particularly important when has infinite dimension, in the sense that the do not become constant as In geometry In geometry, a of P (functionally represented as skel''k''(''P'')) consists of all elements of dimension up to ''k''. For example: : skel0(cube) = 8 vertices : skel1(cube) = 8 vertices, 12 edges : skel2(cube) = 8 vertices, 12 edges, 6 square faces For simplicial sets The above def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Catalan Number
In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894). The ''n''th Catalan number can be expressed directly in terms of binomial coefficients by :C_n = \frac = \frac = \prod\limits_^\frac \qquad\textn\ge 0. The first Catalan numbers for ''n'' = 0, 1, 2, 3, ... are :1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ... . Properties An alternative expression for ''C''''n'' is :C_n = - for n\ge 0, which is equivalent to the expression given above because \tbinom=\tfrac\tbinomn. This expression shows that ''C''''n'' is an integer, which is not immediately obvious from the first formula given. This expression forms the basis for a proof of the correctness of the formula. The Catalan numbers satisfy the recurrence relations :C_0 = 1 \quad \text \quad C_=\sum_^C_i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book '' Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The very first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.87. Notable publications * The 1972 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Polytope
In geometry, a -dimensional simple polytope is a -dimensional polytope each of whose vertices are adjacent to exactly edges (also facets). The vertex figure of a simple -polytope is a - simplex. Simple polytopes are topologically dual to simplicial polytopes. The family of polytopes which are both simple and simplicial are simplices or two-dimensional polygons. A ''simple polyhedron'' is a three-dimensional polyhedron whose vertices are adjacent to three edges and three faces. The dual to a simple polyhedron is a ''simplicial polyhedron'', in which all faces are triangles. Examples Three-dimensional simple polyhedra include the prisms (including the cube), the regular tetrahedron and dodecahedron, and, among the Archimedean solids, the truncated tetrahedron, truncated cube, truncated octahedron, truncated cuboctahedron, truncated dodecahedron, truncated icosahedron, and truncated icosidodecahedron. They also include the Goldberg polyhedron and Fullerenes, including the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dodecagon
In geometry, a dodecagon or 12-gon is any twelve-sided polygon. Regular dodecagon A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12. A regular dodecagon is represented by the Schläfli symbol and can be constructed as a truncated hexagon, t, or a twice-truncated triangle, tt. The internal angle at each vertex of a regular dodecagon is 150°. Area The area of a regular dodecagon of side length ''a'' is given by: :\begin A & = 3 \cot\left(\frac \right) a^2 = 3 \left(2+\sqrt \right) a^2 \\ & \simeq 11.19615242\,a^2 \end And in terms of the apothem ''r'' (see also inscribed figure), the area is: :\begin A & = 12 \tan\left(\frac\right) r^2 = 12 \left(2-\sqrt \right) r^2 \\ & \simeq 3.2153903\,r^2 \end In terms of the circumradius ''R'', the area is: :A = 6 \sin\left(\frac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]