Perfect Complex
   HOME
*





Perfect Complex
In algebra, a perfect complex of modules over a commutative ring ''A'' is an object in the derived category of ''A''-modules that is quasi-isomorphic to a bounded complex of finite projective ''A''-modules. A perfect module is a module that is perfect when it is viewed as a complex concentrated at degree zero. For example, if ''A'' is Noetherian, a module over ''A'' is perfect if and only if it is finitely generated and of finite projective dimension. Other characterizations Perfect complexes are precisely the compact objects in the unbounded derived category D(A) of ''A''-modules. They are also precisely the dualizable objects in this category. A compact object in the ∞-category of (say right) module spectra over a ring spectrum is often called perfect;http://www.math.harvard.edu/~lurie/281notes/Lecture19-Rings.pdf see also module spectrum. Pseudo-coherent sheaf When the structure sheaf \mathcal_X is not coherent, working with coherent sheaves has awkwardness (namely the k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bounded Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain complex is called the singular homology of X, and is a commonly used invariant of a topological space. Chain complexes are studied in homological algebra, but are used in several areas of mathem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Projective Dimension
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains. However, every projective module is a free module if the ring is a principal ideal domain such as the integers, or a polynomial ring (this is the Quillen–Suslin theorem). Projective modules were first introduced in 1956 in the influential book ''Homological Algebra'' by Henri Cartan and Samuel Eilenberg. Definitions Lifting property The usual category theoretical definition is in terms of the property of ''lifting'' that carries over from free to projective modules: a module ''P'' is projective if and only if for every surjective module homomorp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Object (mathematics)
In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition. Definition An object ''X'' in a category ''C'' which admits all filtered colimits (also known as direct limits) is called ''compact'' if the functor :\operatorname_C(X, \cdot) : C \to \mathrm, Y \mapsto \operatorname_C(X, Y) commutes with filtered colimits, i.e., if the natural map :\operatorname \operatorname_C(X, Y_i) \to \operatorname_C(X, \operatorname_i Y_i) is a bijection for any filtered system of objects Y_i in ''C''. Since elements in the filtered colimit at the left are represented by maps X \to Y_i, for some ''i'', the surjectivity of the above map amounts to requiring that a map X \to \operatorname_i Y_i factors over some Y_i. The terminology is motivated by an example arising from topology mentioned below. Several authors also use a terminology which is more closely related to algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dualizable Object
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space ''V''∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property. A category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of all vector spaces is not. Motivation Let ''V'' be a finite-dimensional vector space over some field ''K''. The standard notion of a dual vector space ''V''∗ has the following property: for any ''K''-vector spaces ''U'' an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module Spectrum
In algebra, a module spectrum is a spectrum (topology), spectrum with an action of a ring spectrum; it generalizes a module (mathematics), module in abstract algebra. The ∞-category of (say right) module spectra is stable ∞-category, stable; hence, it can be considered as either analog or generalization of the derived category of modules over a ring. K-theory Lurie defines the K-theory of a ring spectrum ''R'' to be the K-theory of the ∞-category of perfect modules over ''R'' (a perfect module being defined as a compact object in the ∞-category of module spectra.) See also *G-spectrum References *J. LurieLecture 19: Algebraic K-theory of Ring Spectra
{{algebra-stub Homotopy theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Spectrum
In stable homotopy theory, a ring spectrum is a spectrum ''E'' together with a multiplication map :''ÎŒ'': ''E'' ∧ ''E'' → ''E'' and a unit map : ''η'': ''S'' → ''E'', where ''S'' is the sphere spectrum. These maps have to satisfy associativity and unitality conditions up to homotopy, much in the same way as the multiplication of a ring is associative and unital. That is, : ''ÎŒ'' (id ∧ ''ÎŒ'') ∌ ''ÎŒ'' (''ÎŒ'' ∧ id) and : ''ÎŒ'' (id ∧ ''η'') ∌ id ∌ ''ÎŒ''(''η'' ∧ id). Examples of ring spectra include singular homology with coefficients in a ring, complex cobordism, K-theory, and Morava K-theory. See also *Highly structured ring spectrum In mathematics, a highly structured ring spectrum or A_\infty-ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an A_\infty-ring is called an E_\infty-ring. W ... References * Algebraic topology Homotopy theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Séminaire De Géométrie Algébrique Du Bois Marie
In mathematics, the ''SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie'' (''SGA'') was an influential seminar run by Alexander Grothendieck. It was a unique phenomenon of research and publication outside of the main mathematical journals that ran from 1960 to 1969 at the IHÉS near Paris. (The name came from the small wood on the estate in Bures-sur-Yvette where the IHÉS was located from 1962.) The seminar notes were eventually published in twelve volumes, all except one in the Springer Lecture Notes in Mathematics series. Style The material has a reputation of being hard to read for a number of reasons. More elementary or foundational parts were relegated to the EGA series of Grothendieck and Jean DieudonnĂ©, causing long strings of logical dependencies in the statements. The style is very abstract and makes heavy use of category theory. Moreover, an attempt was made to achieve maximally general statements, while assuming that the reader is aware of the motivations and conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ringed Space
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid. Ringed spaces appear in analysis as well as complex algebraic geometry and the scheme theory of algebraic geometry. Note: In the definition of a ringed space, most expositions tend to restrict the rings to be commutative rings, including Hartshorne and Wikipedia. "ÉlĂ©ments de gĂ©omĂ©trie algĂ©brique", on the other hand, does not impose the commutativity assumption, although the book mostly consi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf Of Modules
In mathematics, a sheaf of ''O''-modules or simply an ''O''-module over a ringed space (''X'', ''O'') is a sheaf (mathematics), sheaf ''F'' such that, for any open subset ''U'' of ''X'', ''F''(''U'') is an ''O''(''U'')-module and the restriction maps ''F''(''U'') â†’ ''F''(''V'') are compatible with the restriction maps ''O''(''U'') â†’ ''O''(''V''): the restriction of ''fs'' is the restriction of ''f'' times that of ''s'' for any ''f'' in ''O''(''U'') and ''s'' in ''F''(''U''). The standard case is when ''X'' is a scheme (mathematics), scheme and ''O'' its structure sheaf. If ''O'' is the constant sheaf \underline, then a sheaf of ''O''-modules is the same as a sheaf of abelian groups (i.e., an abelian sheaf). If ''X'' is the prime spectrum of a ring ''R'', then any ''R''-module defines an ''O''''X''-module (called an associated sheaf) in a natural way. Similarly, if ''R'' is a graded ring and ''X'' is the Proj construction, Proj of ''R'', then any graded module ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]