Pavel Alexandrov
   HOME
*





Pavel Alexandrov
Pavel Sergeyevich Alexandrov (russian: Па́вел Серге́евич Алекса́ндров), sometimes romanized ''Paul Alexandroff'' (7 May 1896 – 16 November 1982), was a Soviet mathematician. He wrote about three hundred papers, making important contributions to set theory and topology. In topology, the Alexandroff compactification and the Alexandrov topology are named after him. Biography Alexandrov attended Moscow State University where he was a student of Dmitri Egorov and Nikolai Luzin. Together with Pavel Urysohn, he visited the University of Göttingen in 1923 and 1924. After getting his Ph.D. in 1927, he continued to work at Moscow State University and also joined the Steklov Institute of Mathematics. He was made a member of the Russian Academy of Sciences in 1953. Personal life Luzin challenged Alexandrov to determine if the continuum hypothesis is true. This still unsolved problem was too much for Alexandrov and he had a creative crisis at the end of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noginsk
Noginsk (russian: Ноги́нск) is a types of inhabited localities in Russia, city and the administrative center of Noginsky District in Moscow Oblast, Russia, located east of the Moscow Ring Road on the Klyazma River. Population: History Founded in 1389 as Rogozhi, the town was later renamed Bogorodsk (lit. ''[a town] of the Theotokos, Mother of God'') by a Catherine the Great's decree in 1781, when it was granted town status. Throughout the 19th century and for a good part of the 20th century, the town was a major textile center, processing cotton, silk, and wool. In 1930, the town was renamed Noginsk after Bolsheviks, Bolshevik Viktor Nogin. Administrative and municipal status Within the subdivisions of Russia#Administrative divisions, framework of administrative divisions, Noginsk serves as the administrative center of Noginsky District.Resolution #123-PG As an administrative division, it is, together with five types of inhabited localities in Russia, rural localities, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexandroff Compactification
In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let ''X'' be a topological space. Then the Alexandroff extension of ''X'' is a certain compact space ''X''* together with an open embedding ''c'' : ''X'' → ''X''* such that the complement of ''X'' in ''X''* consists of a single point, typically denoted ∞. The map ''c'' is a Hausdorff compactification if and only if ''X'' is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial Topology
In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions of spaces, such as decomposition into simplicial complexes. After the proof of the simplicial approximation theorem this approach provided rigour. The change of name reflected the move to organise topological classes such as cycles-modulo-boundaries explicitly into abelian groups. This point of view is often attributed to Emmy Noether, and so the change of title may reflect her influence. The transition is also attributed to the work of Heinz Hopf, who was influenced by Noether, and to Leopold Vietoris and Walther Mayer, who independently defined homology. A fairly precise date can be supplied in the internal notes of the Bourbaki group. While topology was still ''combinatorial'' in 1942, it had become ''algebraic'' by 1944. This corresponds also to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Metrization Theorem
In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) such that the topology induced by d is \mathcal. Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff paracompact spaces (and hence normal and Tychonoff) and first-countable. However, some properties of the metric, such as completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of contraction maps than a metric space to which it is homeomorphic. Metrization theorems One of the first widely recognized metrization theorems was . This states that every H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harvard University Press
Harvard University Press (HUP) is a publishing house established on January 13, 1913, as a division of Harvard University, and focused on academic publishing. It is a member of the Association of American University Presses. After the retirement of William P. Sisler in 2017, the university appointed as Director George Andreou. The press maintains offices in Cambridge, Massachusetts near Harvard Square, and in London, England. The press co-founded the distributor TriLiteral LLC with MIT Press and Yale University Press. TriLiteral was sold to LSC Communications in 2018. Notable authors published by HUP include Eudora Welty, Walter Benjamin, E. O. Wilson, John Rawls, Emily Dickinson, Stephen Jay Gould, Helen Vendler, Carol Gilligan, Amartya Sen, David Blight, Martha Nussbaum, and Thomas Piketty. The Display Room in Harvard Square, dedicated to selling HUP publications, closed on June 17, 2009. Related publishers, imprints, and series HUP owns the Belknap Press imprint, whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CWI Quarterly
CWI may refer to: In organizations and institutions: * Care for the Wild International * Centrum Wiskunde & Informatica, Amsterdam, The Netherlands *Certified Welding Inspector, American Welding Society *Children's Welfare Institute, Shanghai, China *Christian Witness to Israel *Civil War Institute at Gettysburg College *College of Western Idaho, a new Community College in Nampa, Idaho * Committee for a Workers' International, an international socialist organisation which split in 2019 into the Committee for a Workers' International (2019) and International Socialist Alternative *Communist Workers' International * Cricket West Indies, the governing body for cricket in the Caribbean In other uses: * Chicago and Western Indiana Railroad * Civil War: The Initiative, a comic book crossover storyline. *Cloverway Inc., a Japanese Animation dubbing company in the United States * CWI (encoding), a Hungarian character set in the 1980s *The Cold War, on the grounds of a second The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrey Kolmogorov
Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet mathematician who contributed to the mathematics of probability theory, topology, intuitionistic logic, turbulence, classical mechanics, algorithmic information theory and computational complexity. Biography Early life Andrey Kolmogorov was born in Tambov, about 500 kilometers south-southeast of Moscow, in 1903. His unmarried mother, Maria Y. Kolmogorova, died giving birth to him. Andrey was raised by two of his aunts in Tunoshna (near Yaroslavl) at the estate of his grandfather, a well-to-do nobleman. Little is known about Andrey's father. He was supposedly named Nikolai Matveevich Kataev and had been an agronomist. Kataev had been exiled from St. Petersburg to the Yaroslavl province after his participation in the revolutionary movem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuum Hypothesis
In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to the following equation in aleph numbers: 2^=\aleph_1, or even shorter with beth numbers: \beth_1 = \aleph_1. The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. The answer to this problem is independent of ZFC, so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940. The name of the hypothesis comes from the term '' the continuum'' for the real numbers. History Cantor believed the continuum hypothesis to be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Russian Academy Of Sciences
The Russian Academy of Sciences (RAS; russian: Росси́йская акаде́мия нау́к (РАН) ''Rossíyskaya akadémiya naúk'') consists of the national academy of Russia; a network of scientific research institutes from across the Russian Federation; and additional scientific and social units such as libraries, publishing units, and hospitals. Peter the Great established the Academy (then the St. Petersburg Academy of Sciences) in 1724 with guidance from Gottfried Leibniz. From its establishment, the Academy benefitted from a slate of foreign scholars as professors; the Academy then gained its first clear set of goals from the 1747 Charter. The Academy functioned as a university and research center throughout the mid-18th century until the university was dissolved, leaving research as the main pillar of the institution. The rest of the 18th century continuing on through the 19th century consisted of many published academic works from Academy scholars and a few Ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Steklov Institute Of Mathematics
Steklov Institute of Mathematics or Steklov Mathematical Institute (russian: Математический институт имени В.А.Стеклова) is a premier research institute based in Moscow, specialized in mathematics, and a part of the Russian Academy of Sciences. The institute is named after Vladimir Andreevich Steklov, who in 1919 founded the Institute of Physics and Mathematics in Leningrad. In 1934, this institute was split into separate parts for physics and mathematics, and the mathematical part became the Steklov Institute. At the same time, it was moved to Moscow. The first director of the Steklov Institute was Ivan Matveyevich Vinogradov. From 19611964, the institute's director was the notable mathematician Sergei Chernikov. The old building of the Institute in Leningrad became its Department in Leningrad. Today, that department has become a separate institute, called the ''St. Petersburg Department of Steklov Institute of Mathematics of Russian Academy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]