Particle Velocity
Particle velocity is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound, but it can also be a transverse wave as with the vibration of a taut string. When applied to a sound wave through a medium of a fluid like air, particle velocity would be the physical speed of a parcel of fluid as it moves back and forth in the direction the sound wave is travelling as it passes. Particle velocity should not be confused with the speed of the wave as it passes through the medium, i.e. in the case of a sound wave, particle velocity is not the same as the speed of sound. The wave moves relatively fast, while the particles oscillate around their original position with a relatively small particle velocity. Particle velocity should also not be confused with the velocity of individual molecules, which depends mostly on the temperature an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Transmission Medium
A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media. Electromagnetic radiation can be transmitted through an optical medium, such as optical fiber, or through twisted pair wires, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Phase Shift
In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an anglelike quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it varies by one full turn as the variable t goes through each period (and F(t) goes through each complete cycle). It may be measured in any angular unit such as degrees or radians, thus increasing by 360° or 2\pi as the variable t completes a full period. This convention is especially appropriate for a sinusoidal function, since its value at any argument t then can be expressed as \phi(t), the sine of the phase, multiplied by some factor (the amplitude of the sinusoid). (The cosine may be used instead of sine, depending on where one considers each period to start.) Usually, whole turns are ignored when expressing the phase; so that \phi(t) is also a periodic function, with the same period as F, that repeatedly scans the same range of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Acoustics
Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries. Hearing is one of the most crucial means of survival in the animal world and speech is one of the most distinctive characteristics of human development and culture. Accordingly, the science of acoustics spreads across many facets of human society—music, medicine, architecture, industrial production, warfare and more. Likewise, animal species such as songbirds and frogs use sound and hearing as a key element of mating rituals or for marking territories. Art, craft, science and technology have prov ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Particle Acceleration
In a compressible sound transmission medium  mainly air  air particles get an accelerated motion: the particle acceleration or sound acceleration with the symbol a in metre/second2. In acoustics or physics, acceleration (symbol: ''a'') is defined as the rate of change (or time derivative) of velocity. It is thus a vector quantity with dimension length/time2. In SI units, this is m/s2. To accelerate an object (air particle) is to change its velocity over a period. Acceleration is defined technically as "the rate of change of velocity of an object with respect to time" and is given by the equation \mathbf = \frac where *''a'' is the acceleration vector *''v'' is the velocity vector expressed in m/s *''t'' is time expressed in seconds. This equation gives ''a'' the units of m/(s·s), or m/s2 (read as "metres per second per second", or "metres per second squared"). An alternative equation is: \mathbf = \frac where *\mathbf is the average acceleration (m/s2) *\mathbf is the init ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Particle Displacement
Particle displacement or displacement amplitude is a measurement of distance of the movement of a sound particle from its equilibrium position in a medium as it transmits a sound wave. The SI unit of particle displacement is the metre (m). In most cases this is a longitudinal wave of pressure (such as sound), but it can also be a transverse wave, such as the vibration of a taut string. In the case of a sound wave travelling through air, the particle displacement is evident in the oscillations of air molecules with, and against, the direction in which the sound wave is travelling. A particle of the medium undergoes displacement according to the particle velocity of the sound wave traveling through the medium, while the sound wave itself moves at the speed of sound, equal to in air at . Mathematical definition Particle displacement, denoted δ, is given by :\mathbf \delta = \int_ \mathbf v\, \mathrmt where v is the particle velocity. Progressive sine waves The particle disp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sound Particle
In the context of particle displacement and velocity, a sound particle is an imaginary infinitesimal volume of a medium that shares the movement of the medium in response to the presence of sound at a specified point or in a specified region. Sound particles are not molecules in the physical or chemical sense; they do not have defined physical or chemical properties or the temperaturedependent kinetic behavior of ordinary molecules. Sound particles are, then, indefinitely small (small compared to the wavelength of sound) so that their movement truly represents the movement of the medium in their locality. They exist in the mind’s eye to enable this movement to be visualized and described quantitatively. Assuming the medium as a whole to be at rest, sound particles are imagined to vibrate about fixed points. See also *Sound *Particle displacement *Particle velocity *Particle acceleration In a compressible sound transmission medium  mainly air  air particles get an acce ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Sound
In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of to . Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges. Acoustics Acoustics is the interdisciplinary science that deals with the study of mechanical waves in gasses, liquids, and solids including vibration, sound, ultrasound, and infrasound. A scientist who works in the field of acoustics is an ''acoustician'', while someone working in the field of acoustica ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Neper
The neper (symbol: Np) is a logarithmic unit for ratios of measurements of physical field and power quantities, such as gain and loss of electronic signals. The unit's name is derived from the name of John Napier, the inventor of logarithms. As is the case for the decibel and bel, the neper is a unit defined in the international standard ISO 80000. It is not part of the International System of Units (SI), but is accepted for use alongside the SI. Definition Like the decibel, the neper is a unit in a logarithmic scale. While the bel uses the decadic (base10) logarithm to compute ratios, the neper uses the natural logarithm, based on Euler's number (). The level a ratio of two signal amplitudes or rootpower quantities, with the unit neper, is given by : L = \ln\frac\mathrm, where x_1 and x_2 are the signal amplitudes, and is the natural logarithm. The level of a ratio of two power quantities, with the unit neper, is given by : L = \frac \ln\frac\mathrm, where p_1 and ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Root Mean Square
In mathematics and its applications, the root mean square of a set of numbers x_i (abbreviated as RMS, or rms and denoted in formulas as either x_\mathrm or \mathrm_x) is defined as the square root of the mean square (the arithmetic mean of the squares) of the set. The RMS is also known as the quadratic mean (denoted M_2) and is a particular case of the generalized mean. The RMS of a continuously varying function (denoted f_\mathrm) can be defined in terms of an integral of the squares of the instantaneous values during a cycle. For alternating electric current, RMS is equal to the value of the constant direct current that would produce the same power dissipation in a resistive load. In estimation theory, the rootmeansquare deviation of an estimator is a measure of the imperfection of the fit of the estimator to the data. Definition The RMS value of a set of values (or a continuoustime waveform) is the square root of the arithmetic mean of the squares of the values, or t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Decibel
The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or rootpower quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 (approximately ) or rootpower ratio of 10 (approximately ). The unit expresses a relative change or an absolute value. In the latter case, the numeric value expresses the ratio of a value to a fixed reference value; when used in this way, the unit symbol is often suffixed with letter codes that indicate the reference value. For example, for the reference value of 1 volt, a common suffix is " V" (e.g., "20 dBV"). Two principal types of scaling of the decibel are in common use. When expressing a power ratio, it is defined as ten times the logarithm in base 10. That is, a change in ''power'' by a factor of 10 corresponds to a 10 dB change in level. When expressing rootpower quantities, a change in ''ampl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Level (logarithmic Quantity)
In science and engineering, a power level and a field level (also called a rootpower level) are logarithmic measures of certain quantities referenced to a standard reference value of the same type. * A ''power level'' is a logarithmic quantity used to measure power, power density or sometimes energy, with commonly used unit decibel (dB). * A ''field level'' (or ''rootpower level'') is a logarithmic quantity used to measure quantities of which the square is typically proportional to power (for instance, the square of Voltage is proportional to Power by the inverse of the conductor's Resistance), etc., with commonly used units neper (Np) or decibel (dB). The type of level and choice of units indicate the scaling of the logarithm of the ratio between the quantity and its reference value, though a logarithm may be considered to be a dimensionless quantity. The reference values for each type of quantity are often specified by international standards. Power and field levels are used ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Angular Frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit time (for example, in rotation) or the rate of change of the phase of a sinusoidal waveform (for example, in oscillations and waves), or as the rate of change of the argument of the sine function. Angular frequency (or angular speed) is the magnitude of the pseudovector quantity angular velocity.(UP1) One turn is equal to 2''π'' radians, hence \omega = \frac = , where: *''ω'' is the angular frequency (unit: radians per second), *''T'' is the period (unit: seconds), *''f'' is the ordinary frequency (unit: hertz) (sometimes ''ν''). Units In SI units, angular frequency is normally presented in radians per second, even when it does not express a rotational value. The unit hertz (Hz) is dimensionally equivalent, but by convention ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 