Parry Circle
   HOME
*



picture info

Parry Circle
In geometry, the Parry point is a special point associated with a plane triangle. It is the triangle center designated X(111) in Clark Kimberling's Encyclopedia of Triangle Centers. The Parry point and Parry circle are named in honor of the English geometer Cyril Parry, who studied them in the early 1990s. Parry circle Let ''ABC'' be a plane triangle. The circle through the centroid and the two isodynamic points of triangle ''ABC'' is called the Parry circle of triangle ''ABC''. The equation of the Parry circle in barycentric coordinates is : \begin & 3(b^2-c^2)(c^2-a^2)(a^2-b^2)(a^2yz+b^2zx+c^2xy) \\ pt& + (x+y+z)\left( \sum_\text b^2c^2(b^2-c^2)(b^2+c^2-2a^2)x\right) =0 \end The center of the Parry circle is also a triangle center. It is the center designated as X(351) in Encyclopedia of Triangle Centers. The trilinear coordinates of the center of the Parry circle are : f(a,b,c) : f(b,c,a) : f(c,a,b) where f(a,b,c) = a(b^2-c^2)(b^2+c^2-2a^2) Parry point The Parry circle an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plane (geometry)
In mathematics, a plane is a Euclidean (flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional Euclidean geometry. Sometimes the word ''plane'' is used more generally to describe a two-dimensional surface, for example the hyperbolic plane and elliptic plane. When working exclusively in two-dimensional Euclidean space, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional space, often in the plane. Euclidean geometry Euclid set forth the first great landmark of mathematical thought, an axiomatic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-Collinearity, collinear, determine a unique triangle and simultaneously, a unique Plane (mathematics), plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle Center
In geometry, a triangle center (or triangle centre) is a point in the plane that is in some sense a center of a triangle akin to the centers of squares and circles, that is, a point that is in the middle of the figure by some measure. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clark Kimberling
Clark Kimberling (born November 7, 1942 in Hinsdale, Illinois) is a mathematician, musician, and composer. He has been a mathematics professor since 1970 at the University of Evansville. His research interests include triangle centers, integer sequences, and hymnology. Kimberling received his PhD in mathematics in 1970 from the Illinois Institute of Technology, under the supervision of Abe Sklar. Since at least 1994, he has maintained a list of triangle centers and their properties. In its current on-line form, the Encyclopedia of Triangle Centers, this list comprises tens of thousands of entries. He has contributed to ''The Hymn'', the journal of the Hymn Society in the United States and Canada; and in the '' Canterbury Dictionary of Hymnology''. Kimberling's golden triangle Robert C. Schoen has defined a "golden triangle" as a triangle with two of its sides in the golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Encyclopedia Of Triangle Centers
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. It is maintained by Clark Kimberling, Professor of Mathematics at the University of Evansville. , the list identifies 52,440 triangle centers. Each point in the list is identified by an index number of the form ''X''(''n'')—for example, ''X''(1) is the incenter. The information recorded about each point includes its trilinear and barycentric coordinates and its relation to lines joining other identified points. Links to The Geometer's Sketchpad diagrams are provided for key points. The Encyclopedia also includes a glossary of terms and definitions. Each point in the list is assigned a unique name. In cases where no particular name arises from geometrical or historical considerations, the name of a star is used instead. For example, the 770th point in the list is named ''point Acamar''. The first 10 points listed in the Encyclopedia ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Centroid
In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any object in ''n''-dimensional Euclidean space. In geometry, one often assumes uniform mass density, in which case the ''barycenter'' or ''center of mass'' coincides with the centroid. Informally, it can be understood as the point at which a cutout of the shape (with uniformly distributed mass) could be perfectly balanced on the tip of a pin. In physics, if variations in gravity are considered, then a ''center of gravity'' can be defined as the weighted mean of all points weighted by their specific weight. In geography, the centroid of a radial projection of a region of the Earth's surface to sea level is the region's geographical center. History The term "centroid" is of recent coinage (1814). It is used as a substitute for the older te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isodynamic Point
In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by . Distance ratios The isodynamic points were originally defined from certain eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circumcircle
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polygon has a circumscribed circle. A polygon that does have one is called a cyclic polygon, or sometimes a concyclic polygon because its vertices are concyclic. All triangles, all regular simple polygons, all rectangles, all isosceles trapezoids, and all right kites are cyclic. A related notion is the one of a minimum bounding circle, which is the smallest circle that completely contains the polygon within it, if the circle's center is within the polygon. Every polygon has a unique minimum bounding circle, which may be constructed by a linear time algorithm. Even if a polygon has a circumscribed circle, it may be different from its minimum bounding circle. For example, for an obtuse triangle, the minimum bounding circle has the longest sid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kiepert Conics
In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows: :If the three triangles A^\prime BC, AB^\prime C and ABC^\prime, constructed on the sides of a triangle ABC as bases, are similar, isosceles and similarly situated, then the triangles ABC and A^\prime B^\prime C^\prime are in perspective. As the base angle of the isosceles triangles varies between -\pi/2 and \pi/2, the locus of the center of perspectivity of the triangles ABC and A^\prime B^\prime C^\prime is a hyperbola called the Kiepert hyperbola and the envelope of their axis of perspectivity is a parabola called the Kiepert parabola. It has been proved that the Kiepert hyperbola is the hyperbola passing through the vertices, the centroid and the orthocenter of the reference triangle and the Kiepert parabola is the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trilinear Coordinates
In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices and respectively; the ratio is the ratio of the perpendicular distances from the point to the sidelines opposite vertices and respectively; and likewise for and vertices and . In the diagram at right, the trilinear coordinates of the indicated interior point are the actual distances (, , ), or equivalently in ratio form, for any positive constant . If a point is on a sideline of the reference triangle, its corresponding trilinear coordinate is 0. If an exterior point is on the opposite side of a sideline from the interior of the triangle, its trilinear coordinate associated with that sideline is negative. It is impossible ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]