Parity Learning
   HOME
*





Parity Learning
Parity learning is a problem in machine learning. An algorithm that solves this problem must find a function ''ƒ'', given some samples (''x'', ''ƒ''(''x'')) and the assurance that ''ƒ'' computes the parity of bits at some fixed locations. The samples are generated using some distribution over the input. The problem is easy to solve using Gaussian elimination provided that a sufficient number of samples (from a distribution which is not too skewed) are provided to the algorithm. Noisy version ("Learning Parity with Noise") In Learning Parity with Noise (LPN), the samples may contain some error. Instead of samples (''x'', ''ƒ''(''x'')), the algorithm is provided with (''x'', ''y''), where for random boolean b \in \ y = \begin f(x), & \textb \\ 1-f(x), & \text \end The noisy version of the parity learning problem is conjectured to be hard. See also * Learning with errors Learning with errors (LWE) is the computational problem of inferring a linear n-ary func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making predicti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity Function
In Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function. The parity function is notable for its role in theoretical investigation of circuit complexity of Boolean functions. The output of the parity function is the parity bit. Definition The n-variable parity function is the Boolean function f:\^n\to\ with the property that f(x)=1 if and only if the number of ones in the vector x\in\^n is odd. In other words, f is defined as follows: :f(x)=x_1\oplus x_2 \oplus \dots \oplus x_n where \oplus denotes exclusive or. Properties Parity only depends on the number of ones and is therefore a symmetric Boolean function. The ''n''-variable parity function and its negation are the only Boolean functions for which all disjunctive normal forms have the maximal number of 2 ''n'' − 1 monomials of length ''n'' and all conjunc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855) although some special cases of the method—albeit presented without proof—were known to Chinese mathematicians as early as circa 179 AD. To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. (subtraction can be achieved by multiplying one row with -1 and adding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Learning With Errors
Learning with errors (LWE) is the computational problem of inferring a linear n-ary function f over a finite ring from given samples y_i = f(\mathbf_i) some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography. More precisely, the LWE problem is defined as follows. Let \mathbb_q denote the ring of integers modulo q and let \mathbb_q^n denote the set of n- vectors over \mathbb_q . There exists a certain unknown linear function f:\mathbb_q^n \rightarrow \mathbb_q, and the input to the LWE problem is a sample of pairs (\mathbf,y), where \mathbf\in \mathbb_q^n and y \in \mathbb_q, so that with high probability y=f(\mathbf). Furthermore, the deviation from the equality is according to some known noise model. The problem calls for finding the function f, or some close approximation thereof, with high probability. The LWE problem was introduced by Oded Regev in 2005 (who won the 2018 Gödel Prize for this work), it is a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]