Parabolic Lie Algebra
   HOME
*





Parabolic Lie Algebra
In algebra, a parabolic Lie algebra \mathfrak p is a subalgebra of a semisimple Lie algebra \mathfrak g satisfying one of the following two conditions: * \mathfrak p contains a maximal solvable subalgebra (a Borel subalgebra) of \mathfrak g; * the Killing perp of \mathfrak p in \mathfrak g is the nilradical of \mathfrak p. These conditions are equivalent over an algebraically closed field of characteristic zero, such as the complex numbers. If the field \mathbb F is not algebraically closed, then the first condition is replaced by the assumption that * \mathfrak p\otimes_\overline contains a Borel subalgebra of \mathfrak g\otimes_\overline where \overline is the algebraic closure of \mathbb F. See also * Generalized flag variety In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a smo ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Lie Algebra
In mathematics, a Lie algebra \mathfrak is solvable if its derived series terminates in the zero subalgebra. The ''derived Lie algebra'' of the Lie algebra \mathfrak is the subalgebra of \mathfrak, denoted : mathfrak,\mathfrak/math> that consists of all linear combinations of Lie brackets of pairs of elements of \mathfrak. The ''derived series'' is the sequence of subalgebras : \mathfrak \geq mathfrak,\mathfrak\geq \mathfrak,\mathfrak mathfrak,\mathfrak \geq [ \mathfrak,\mathfrak mathfrak,\mathfrak, \mathfrak,\mathfrak mathfrak,\mathfrak] \geq ... If the derived series eventually arrives at the zero subalgebra, then the Lie algebra is called solvable. The derived series for Lie algebras is analogous to the derived series for commutator subgroups in group theory, and solvable Lie algebras are analogs of solvable groups. Any nilpotent Lie algebra_is_a_fortiori.html" ;"title="mathfrak,\mathfrak ... is a fortiori">mathfrak,\mathfrak ... is a fortiori solvable but the converse is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Subalgebra
In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra \mathfrak is a maximal solvable subalgebra. The notion is named after Armand Borel. If the Lie algebra \mathfrak is the Lie algebra of a complex Lie group, then a Borel subalgebra is the Lie algebra of a Borel subgroup. Borel subalgebra associated to a flag Let \mathfrak g = \mathfrak(V) be the Lie algebra of the endomorphisms of a finite-dimensional vector space ''V'' over the complex numbers. Then to specify a Borel subalgebra of \mathfrak g amounts to specify a flag of ''V''; given a flag V = V_0 \supset V_1 \supset \cdots \supset V_n = 0, the subspace \mathfrak b = \ is a Borel subalgebra, and conversely, each Borel subalgebra is of that form by Lie's theorem. Hence, the Borel subalgebras are classified by the flag variety of ''V''. Borel subalgebra relative to a base of a root system Let \mathfrak g be a complex semisimple Lie algebra, \mathfrak h a Cartan subalgebra and ''R'' the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Killing Form
In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras. History and name The Killing form was essentially introduced into Lie algebra theory by in his thesis. In a historical survey of Lie theory, has described how the term ''"Killing form"'' first occurred in 1951 during one of his own reports for the Séminaire Bourbaki; it arose as a misnomer, since the form had previously been used by Lie theorists, without a name attached. Some other authors now employ the term ''" Cartan-Killing form"''. At the end of the 19th century, Killing had noted that the coefficients of the characteristic equation of a regular semisimple element of a Lie algebra are invariant under the adjoint group, from which it follows tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nilradical Of A Lie Algebra
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical \mathfrak(\mathfrak g) of a finite-dimensional Lie algebra \mathfrak is its maximal nilpotent ideal, which exists because the sum of any two nilpotent ideals is nilpotent. It is an ideal in the radical \mathfrak(\mathfrak) of the Lie algebra \mathfrak. The quotient of a Lie algebra by its nilradical is a reductive Lie algebra \mathfrak^. However, the corresponding short exact sequence : 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^\to 0 does not split in general (i.e., there isn't always a ''subalgebra'' complementary to \mathfrak(\mathfrak g) in \mathfrak). This is in contrast to the Levi decomposition: the short exact sequence : 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^\to 0 does split (essentially because the quotient \mathfrak^ is semisimple). See also * Levi decomposition * Nilradical of a ring In algebra, the nilradical of a commutativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraically Closed
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0  has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Zero
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Numbers
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generalized Flag Variety
In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space ''V'' over a field F, which is a flag variety for the special linear group over F. Other flag varieties arise by considering partial flags, or by restriction from the special linear group to subgroups such as the symplectic group. For partial flags, one needs to specify the sequence of dimensions of the flags under consideration. For subgroups of the linear group, additional conditions must be imposed on the flags. In the most general sense, a generalized flag variety is defined to mean a projective ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]