PTPN12
   HOME
*





PTPN12
Tyrosine-protein phosphatase non-receptor type 12 is an enzyme that in humans is encoded by the ''PTPN12'' gene. The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains a C-terminal PEST motif, which serves as a protein–protein interaction domain, and may be related to protein intracellular half-life. This PTP was found to bind and dephosphorylate the product of oncogene c-ABL, thus may play a role in oncogenesis. This PTP was shown to interact with, and dephosphorylate, various of cytoskeleton and cell adhesion molecules, such as p130 (Cas), CAKbeta/PTK2B, PSTPIP1, and paxillin, which suggested its regulatory roles in controlling cell shape and mobility. Interactions PTPN12 has been shown to interact with BCAR1, Grb2, PSTPIP1, TGFB1I1, Paxillin and SHC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paxillin
Paxillin is a protein that in humans is encoded by the ''PXN'' gene. Paxillin is expressed at focal adhesions of non-striated cells and at costameres of striated muscle cells, and it functions to adhere cells to the extracellular matrix. Mutations in ''PXN'' as well as abnormal expression of paxillin protein has been implicated in the progression of various cancers. Structure Human paxillin is 64.5 kDa in molecular weight and 591 amino acids in length. The C-terminal region of paxillin is composed of four tandem double zinc finger LIM domains that are cysteine/histidine-rich with conserved repeats; these serve as binding sites for the protein tyrosine phosphatase-PEST, tubulin and serves as the targeting motif for focal adhesions. The N-terminal region of paxillin has five highly conserved leucine-rich sequences termed LD motifs, which mediate several interactions, including that with pp125FAK and vinculin. The LD motifs are predicted to form amphipathic alpha helices, wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TGFB1I1
Transforming growth factor beta-1-induced transcript 1 protein is a protein that in humans is encoded by the ''TGFB1I1'' gene. Often put together with and studied alongside TGFB1I1 is the mouse homologue HIC-5 ( Hydrogen Peroxide-Inducible Clone-5). As the name suggests, TGFB1I1 is an induced form of the larger family of TGBF1. Studies suggest TGBF1I1 plays a role in processes of cell growth, proliferation, migration, differentiation and senescence. TGBF1I1 is most localized at focal adhesion complexes of cells, although it may be found active in the cytosol, nucleus and cell membrane as well. Functions Transforming growth factor beta-1-induced transcript 1 plays a role in a number of cell functions. Originally, TGFB1I1 was isolated as a senescence-inducing gene from mouse osteoblastic cells through treatment with transforming growth factor beta-1 and hydrogen peroxide. During this, TGFB1I1 was also being independently discovered by numerous other groups and was characterized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSTPIP1
Proline-serine-threonine phosphatase-interacting protein 1 is an enzyme that in humans is encoded by the ''PSTPIP1'' gene. Interactions PSTPIP1 has been shown to interact with: * Abl gene, * BZW1, * CD2, * PTPN12, * PTPN18, and * Wiskott-Aldrich syndrome protein. See also * PAPA syndrome PAPA syndrome is an acronym for pyogenic arthritis, pyoderma gangrenosum and acne. It is a rare genetic disorder characterised by its effects on skin and joints. Signs and symptoms PAPA syndrome usually begins with arthritis at a young age, with t ... References Further reading

* * * * * * * * * * * * * * {{gene-15-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called ''enzymology'' and the field of pseudoenzyme analysis recognizes that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties. Enzymes are known to catalyze more than 5,000 biochemical reaction types. Other biocatalysts are catalytic RNA molecules, called ribozymes. Enzymes' specificity comes from their unique three-dimensional structures. Like all catalysts, enzymes increase the react ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a basic unit of heredity and the molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and noncoding genes. During gene expression, the DNA is first copied into RNA. The RNA can be directly functional or be the intermediate template for a protein that performs a function. The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be. Most biological traits are under the influence of polygenes (many different genes) as well as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein–protein Interaction
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context. Proteins rarely act alone as their functions tend to be regulated. Many molecular processes within a cell are carried out by molecular machines that are built from numerous protein components organized by their PPIs. These physiological interactions make up the so-called interactomics of the organism, while aberrant PPIs are the basis of multiple aggregation-related diseases, such as Creutzfeldt–Jakob and Alzheimer's diseases. PPIs have been studied with many methods and from different perspectives: biochemistry, quantum chemistry, molecular dynamics, signal trans ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




BCAR1
Breast cancer anti-estrogen resistance protein 1 is a protein that in humans is encoded by the ''BCAR1'' gene. Gene BCAR1 is localized on chromosome 16 on region q, on the negative strand and it consists of seven exons. Eight different gene isoforms have been identified that share the same sequence starting from the second exon onwards but are characterized by different starting sites. The longest isoform is called BCAR1-iso1 (RefSeq NM_001170714.1) and is 916 amino acids long, the other shorter isoforms start with an alternative first exon. Function BCAR1 is a ubiquitously expressed adaptor molecule originally identified as the major substrate of v-Src and v-Crk . p130Cas/BCAR1 belongs to the Cas family of adaptor proteins and can act as a docking protein for several signalling partners. Due to its ability to associate with multiple signaling partners, p130Cas/BCAR1 contributes to the regulation to a variety of signaling pathways leading to cell adhesion, migration, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]