HOME
*





Pure Function
In computer programming, a pure function is a function that has the following properties: # the function return values are identical for identical arguments (no variation with local static variables, non-local variables, mutable reference arguments or input streams), and # the function has no side effects (no mutation of local static variables, non-local variables, mutable reference arguments or input/output streams). Thus a pure function is a computational analogue of a mathematical function. Some authors, particularly from the imperative language community, use the term "pure" for all functions that just have the above property 2 (discussed below). Examples Pure functions The following examples of C++ functions are pure: Impure functions The following C++ functions are impure as they lack the above property 1: The following C++ functions are impure as they lack the above property 2: The following C++ functions are impure as they lack both the above properties 1 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Programming
Computer programming is the process of performing a particular computation (or more generally, accomplishing a specific computing result), usually by designing and building an executable computer program. Programming involves tasks such as analysis, generating algorithms, profiling algorithms' accuracy and resource consumption, and the implementation of algorithms (usually in a chosen programming language, commonly referred to as coding). The source code of a program is written in one or more languages that are intelligible to programmers, rather than machine code, which is directly executed by the central processing unit. The purpose of programming is to find a sequence of instructions that will automate the performance of a task (which can be as complex as an operating system) on a computer, often for solving a given problem. Proficient programming thus usually requires expertise in several different subjects, including knowledge of the application domain, specialized algori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

IEEE Rounding Mode
IEEE 754-1985 was an industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. During its 23 years, it was the most widely used format for floating-point computation. It was implemented in software, in the form of floating-point libraries, and in hardware, in the instructions of many CPUs and FPUs. The first integrated circuit to implement the draft of what was to become IEEE 754-1985 was the Intel 8087. IEEE 754-1985 represents numbers in binary, providing definitions for four levels of precision, of which the two most commonly used are: The standard also defines representations for positive and negative infinity, a "negative zero", five exceptions to handle invalid results like division by zero, special values called NaNs for representing those exceptions, denormal numbers to represent numbers smaller than shown above, and four roundi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Purely Functional Data Structure
In computer science, a purely functional data structure is a data structure that can be implemented in a purely functional language. The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety. Efficient purely functional data structures may require the use of lazy evaluation and memoization. Definition Persistent data structures have the property of keeping previous versions of themselves unmodified. On the other hand, structures such as arrays admit a destructive update,''Purely functional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deterministic Algorithm
In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function; a function has a unique value for any input in its domain, and the algorithm is a process that produces this particular value as output. Formal definition Deterministic algorithms can be defined in terms of a state machine: a ''state'' describes what a machine is doing at a particular instant in time. State machines pass in a discrete manner from one state to another. Just after we enter the input, the machine is in its ''initial state'' or ''start state''. If the machine is deterministic, this means that from this point onwards, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compile-time Function Execution
In computing, compile-time function execution (or compile time function evaluation, or general constant expressions) is the ability of a compiler, that would normally compile a function to machine code and execute it at run time, to execute the function at compile time. This is possible if the arguments to the function are known at compile time, and the function does not make any reference to or attempt to modify any global state (i.e. it is a pure function). If the value of only some of the arguments are known, the compiler may still be able to perform some level of compile-time function execution ( partial evaluation), possibly producing more optimized code than if no arguments were known. Examples Lisp The Lisp macro system is an early example of the use of compile-time evaluation of user-defined functions in the same language. C++ The Metacode extension to C++ (Vandevoorde 2003) was an early experimental system to allow compile-time function evaluation (CTFE) and code inject ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unit Testing
In computer programming, unit testing is a software testing method by which individual units of source code—sets of one or more computer program modules together with associated control data, usage procedures, and operating procedures—are tested to determine whether they are fit for use. History Before unit testing, capture and replay testing tools were the norm. In 1997, Kent Beck and Erich Gamma developed and released JUnit, a unit test framework that became popular with Java developers. Google embraced automated testing around 2005–2006. Description Unit tests are typically automated tests written and run by software developers to ensure that a section of an application (known as the "unit") meets its design and behaves as intended. In procedural programming, a unit could be an entire module, but it is more commonly an individual function or procedure. In object-oriented programming, a unit is often an entire interface, such as a class, or an individual ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compile-time Function Execution
In computing, compile-time function execution (or compile time function evaluation, or general constant expressions) is the ability of a compiler, that would normally compile a function to machine code and execute it at run time, to execute the function at compile time. This is possible if the arguments to the function are known at compile time, and the function does not make any reference to or attempt to modify any global state (i.e. it is a pure function). If the value of only some of the arguments are known, the compiler may still be able to perform some level of compile-time function execution ( partial evaluation), possibly producing more optimized code than if no arguments were known. Examples Lisp The Lisp macro system is an early example of the use of compile-time evaluation of user-defined functions in the same language. C++ The Metacode extension to C++ (Vandevoorde 2003) was an early experimental system to allow compile-time function evaluation (CTFE) and code inject ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GNU Compiler Collection
The GNU Compiler Collection (GCC) is an optimizing compiler produced by the GNU Project supporting various programming languages, hardware architectures and operating systems. The Free Software Foundation (FSF) distributes GCC as free software under the GNU General Public License (GNU GPL). GCC is a key component of the GNU toolchain and the standard compiler for most projects related to GNU and the Linux kernel. With roughly 15 million lines of code in 2019, GCC is one of the biggest free programs in existence. It has played an important role in the growth of free software, as both a tool and an example. When it was first released in 1987 by Richard Stallman, GCC 1.0 was named the GNU C Compiler since it only handled the C programming language. It was extended to compile C++ in December of that year. Front ends were later developed for Objective-C, Objective-C++, Fortran, Ada, D and Go, among others. The OpenMP and OpenACC specifications are also supported in the C and C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thread (computing)
In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. The implementation of threads and processes differs between operating systems. In Modern Operating Systems, Tanenbaum shows that many distinct models of process organization are possible.TANENBAUM, Andrew S. Modern Operating Systems. 1992. Prentice-Hall International Editions, ISBN 0-13-595752-4. In many cases, a thread is a component of a process. The multiple threads of a given process may be executed concurrently (via multithreading capabilities), sharing resources such as memory, while different processes do not share these resources. In particular, the threads of a process share its executable code and the values of its dynamically allocated variables and non- thread-local global variables at any given time. History Threads made an early appearance under the name of "tasks ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Optimization
In compiler theory, loop optimization is the process of increasing execution speed and reducing the overheads associated with loops. It plays an important role in improving cache performance and making effective use of parallel processing capabilities. Most execution time of a scientific program is spent on loops; as such, many compiler optimization techniques have been developed to make them faster. Representation of computation and transformations Since instructions inside loops can be executed repeatedly, it is frequently not possible to give a bound on the number of instruction executions that will be impacted by a loop optimization. This presents challenges when reasoning about the correctness and benefits of a loop optimization, specifically the representations of the computation being optimized and the optimization(s) being performed.In the book Reasoning About Program Transformations', Jean-Francois Collard discusses in depth the general question of representing execu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Common Subexpression Elimination
In compiler theory, common subexpression elimination (CSE) is a compiler optimization that searches for instances of identical expressions (i.e., they all evaluate to the same value), and analyzes whether it is worthwhile replacing them with a single variable holding the computed value. Example In the following code: a = b * c + g; d = b * c * e; it may be worth transforming the code to: tmp = b * c; a = tmp + g; d = tmp * e; if the cost of storing and retrieving tmp is less than the cost of calculating b * c an extra time. Principle The possibility to perform CSE is based on available expression analysis (a data flow analysis). An expression b*c is available at a point ''p'' in a program if: * every path from the initial node to p evaluates b*c before reaching ''p'', * and there are no assignments to b or c after the evaluation but before ''p''. The cost/benefit analysis performed by an optimizer will calculate whether the cost of the store to tmp is less than the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]