HOME
*





Projection (relational Algebra)
In relational algebra, a projection is a unary operation written as \Pi_( R ), where R is a relation and a_1,...,a_n are attribute names. Its result is defined as the set obtained when the components of the tuples in R are restricted to the set \ – it ''discards'' (or ''excludes'') the other attributes. In practical terms, if a relation is thought of as a table, then projection can be thought of as picking a subset of its columns. For example, if the attributes are (name, age), then projection of the relation onto attribute list (age) yields – we have discarded the names, and only know what ages are present. Projections may also modify attribute values. For example, if R has attributes a, b, c, where the values of b are numbers, then \Pi_( R ) is like R, but with all b-values halved.http://www.csee.umbc.edu/~pmundur/courses/CMSC661-02/rel-alg.pdf ''See Problem 3.8.B on page 3'' Related concepts The closely related concept in set theory (see: projection (set theory)) differs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Select (SQL)
The SQL SELECT statement returns a result set of records, from one or more tables. A SELECT statement retrieves zero or more rows from one or more database tables or database views. In most applications, SELECT is the most commonly used data manipulation language (DML) command. As SQL is a declarative programming language, SELECT queries specify a result set, but do not specify how to calculate it. The database translates the query into a "query plan" which may vary between executions, database versions and database software. This functionality is called the "query optimizer" as it is responsible for finding the best possible execution plan for the query, within applicable constraints. The SELECT statement has many optional clauses: * SELECT clause is the list of columns or SQL expressions that must be returned by the query. This is approximately the relational algebra projection operation. * AS optionally provides an alias for each column or expression in the SELECT cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relational Algebra
In database theory, relational algebra is a theory that uses algebraic structures with a well-founded semantics for modeling data, and defining queries on it. The theory was introduced by Edgar F. Codd. The main application of relational algebra is to provide a theoretical foundation for relational databases, particularly query languages for such databases, chief among which is SQL. Relational databases store tabular data represented as relations. Queries over relational databases often likewise return tabular data represented as relations. The main purpose of the relational algebra is to define operators that transform one or more input relations to an output relation. Given that these operators accept relations as input and produce relations as output, they can be combined and used to express potentially complex queries that transform potentially many input relations (whose data are stored in the database) into a single output relation (the query results). Unary operator ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

String (computer Science)
In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. ''String'' may also denote more general arrays or other sequence (or list) data types and structures. Depending on the programming language and precise data type used, a variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements. When a string appears literally in source code, it is known as a string literal or an anonymous string. In formal languages, which are used in ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projection (set Theory)
In set theory, a projection is one of two closely related types of functions or operations, namely: * A set-theoretic operation typified by the ''j''th projection map, written \mathrm_, that takes an element \vec = (x_1,\ \ldots,\ x_j,\ \ldots,\ x_k) of the Cartesian product (X_1 \times \cdots \times X_j \times \cdots \times X_k) to the value \mathrm_(\vec) = x_j. * A function that sends an element ''x'' to its equivalence class under a specified equivalence relation ''E'', or, equivalently, a surjection from a set to another set.. The function from elements to equivalence classes is a surjection, and every surjection corresponds to an equivalence relation under which two elements are equivalent when they have the same image. The result of the mapping is written as 'x''when ''E'' is understood, or written as 'x''sub>''E'' when it is necessary to make ''E'' explicit. See also * Cartesian product * Projection (relational algebra) * Projection (mathematics) In mathematics, a proj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Relation Of Degree Zero
A relation of degree zero, 0-ary relation, or nullary relation is a relation with zero attributes. There are exactly two relations of degree zero. One has cardinality zero; that is, contains no tuples at all. The other has cardinality 1 contains the unique 0-tuple.:56 The zero-degree relations represent true and false in relational algebra.:57 Under the closed-world assumption, an ''n''-ary relation is interpreted as the extension of some ''n''-adic predicate: all and only those ''n''-tuples whose values, substituted for corresponding free variables in the predicate, yield propositions that hold true, appear in the relation. A zero-degree relation is therefore interpreted as the extension of the 0-adic predicate . The zero-degree relation with cardinality zero therefore represents false because it contains no tuples that yield a true proposition, and the zero-degree relation with cardinality 1 represents true because it contains the unique 0-tuple that yields a true propos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. The subset relation defines a partial order on sets. In fact, the subsets of a given set form a Boolean algebra under the subset relation, in which the join and meet are given by intersection and union, and the subset relation itself is the Boolean inclusion relation. Definition If ''A'' and ''B'' are sets and every element of ''A'' is also an element of ''B'', then: :*''A'' is a subset of ''B'', denoted by A \subseteq B, or equivalently, :* ''B'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relation (database)
In database theory, a relation, as originally defined by E. F. Codd, is a set of tuples (d1, d2, ..., dn), where each element dj is a member of Dj, a data domain. Codd's original definition notwithstanding, and contrary to the usual definition in mathematics, there is no ordering to the elements of the tuples of a relation. Instead, each element is termed an attribute value. An attribute is a name paired with a domain (nowadays more commonly referred to as a type or data type). An attribute value is an attribute name paired with an element of that attribute's domain, and a tuple is a ''set'' of attribute values in which no two distinct elements have the same name. Thus, in some accounts, a tuple is described as a function, mapping names to values. A set of attributes in which no two distinct elements have the same name is called a heading. It follows from the above definitions that to every tuple there corresponds a unique heading, being the set of names from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Restriction (mathematics)
In mathematics, the restriction of a function f is a new function, denoted f\vert_A or f , obtained by choosing a smaller domain A for the original function f. The function f is then said to extend f\vert_A. Formal definition Let f : E \to F be a function from a set E to a set F. If a set A is a subset of E, then the restriction of f to A is the function _A : A \to F given by _A(x) = f(x) for x \in A. Informally, the restriction of f to A is the same function as f, but is only defined on A. If the function f is thought of as a relation (x,f(x)) on the Cartesian product E \times F, then the restriction of f to A can be represented by its graph where the pairs (x,f(x)) represent ordered pairs in the graph G. Extensions A function F is said to be an ' of another function f if whenever x is in the domain of f then x is also in the domain of F and f(x) = F(x). That is, if \operatorname f \subseteq \operatorname F and F\big\vert_ = f. A '' '' (respectively, '' '', etc.) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiset
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that element in the multiset. As a consequence, an infinite number of multisets exist which contain only elements and , but vary in the multiplicities of their elements: * The set contains only elements and , each having multiplicity 1 when is seen as a multiset. * In the multiset , the element has multiplicity 2, and has multiplicity 1. * In the multiset , and both have multiplicity 3. These objects are all different when viewed as multisets, although they are the same set, since they all consist of the same elements. As with sets, and in contrast to tuples, order does not matter in discriminating multisets, so and denote the same multiset. To distinguish between sets and multisets, a notation that incorporates square brackets is so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alphabet (formal Languages)
In formal language theory, an alphabet is a non-empty set of symbols/glyphs, typically thought of as representing letters, characters, or digits but among other possibilities the "symbols" could also be a set of phonemes (sound units). Alphabets in this technical sense of a set are used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and depending on its purpose maybe be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., \), or even uncountable (e.g., \). Strings, also known as "words", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is , the binary alphabet, and a "00101111" is an example of a bina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




String Projection
In computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. Strings and languages A string is a finite sequence of characters. The empty string is denoted by \varepsilon. The concatenation of two string s and t is denoted by s \cdot t, or shorter by s t. Concatenating with the empty string makes no difference: s \cdot \varepsilon = s = \varepsilon \cdot s. Concatenation of strings is associative: s \cdot (t \cdot u) = (s \cdot t) \cdot u. For example, (\langle b \rangle \cdot \langle l \rangle) \cdot (\varepsilon \cdot \langle ah \rangle) = \langle bl \rangle \cdot \langle ah \rangle = \langle blah \rangle. A language is a finite or infinite set of strings. Besides the usual set operations like union, interse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]